Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 26 (2000), S. 2035-2048 
    ISSN: 1573-1561
    Keywords: Epiphytic bacterial colonization ; antibacterial activity ; essential oils ; leaf surface phenolics ; oxygenated constituents ; INA bacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The influence of secondary metabolites on the bacterial colonization of the phyllosphere of four aromatic species of the Mediterranean region was studied for the determination of total bacterial populations (TBP) and populations of ice nucleation active bacteria (INA). The aromatic plants used were lavender (Lavandula angustifolia), rosemary (Rosmarinus officinalis), Greek sage (Salvia fruticosa), and Greek oregano (Origanum vulgare subsp. hirtum), all growing in neighboring sites. Lavender was heavily colonized by bacteria, whereas rosemary, sage, and oregano were poorly colonized. The differences in bacterial colonization were related to the plants' content of secondary metabolites and their antimicrobial activity, as recorded in the in vitro bioassays. Lavender had the lowest amount of surface phenolics, the lowest concentration of essential oil, and the overall weakest antibacterial activity. Among the epiphytic bacteria, ice nucleation active ones were not detected on oregano and sage leaves but were found in extremely low numbers on those of rosemary and lavender. For this reason, these aromatic plants were further studied regarding their effect against two INA bacteria, Pseudomonas syringae and Erwinia herbicola. Minimum inhibitory concentrations and minimum bactericidal concentrations were estimated for the essential oils and for their main constituents under different bacterial populations. The antibacterial effect of Labiatae aromatic plants against INA bacteria not only explains the scarce presence of the latter on their leaves but may have applications in agriculture as a frost-control method for sensitive crops.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...