Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 62 (1994), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: A large developmental increase in Glc3Man9- GlcNAc2-P-P-dolichol (Oligo-P-P-Dol) synthesis and protein W-glycosylation in primary cultures of embryonic rat brain cells has been reported previously. In vitro enzyme studies and metabolic labeling experiments now show that there is a coordinate induction of long-chain c/s-iso- prenyltransferase (IPTase) activity, an activity required for the chain-elongation stage of dolichyl monophosphate (Dol-P) biosynthesis de novo, and Oligo-P-P-Dol biosynthesis in embryonic rat brain. Different developmental patterns were observed for IPTase and |8-hydroxy-/3-methyl- glutaryl-CoA (HMG-CoA) reductase activity as well as Dol- P and cholesterol biosynthesis, indicating that these pathways are regulated independently in rat brain. Three separate experimental approaches provide evidence that the amount of Dol-P available in the rough endoplasmic reticulum (RER) is a rate-limiting factor in the expression of the lipid intermediate pathway. First, metabolic labeling experiments show that the biosynthesis of Dol-P is induced at the same time or just prior to the induction of Oligo-P-P-Dol biosynthesis. Second, the time of induction and rate of Oligo-P-P-Dol synthesis are accelerated when Dol-P is supplemented in the culture medium. Third, in vitro assays of mannosylphosphoryldolichol synthase and A/-acetylglucosaminylpyrophosphoryldolichol synthase indicate that there are only minor increases in the levels of these enzymes during development, but the amount of endogenous Dol-P in the RER that is accessible to the glycosyltransferases increases when IPTase activity is induced. In summary, the current studies with embryonic rat brain cells document the coordinate induction of IPTase activity and Oligo-P-P-Dol synthesis, support the hypothesis that the availability of Dol-P in the RER is one rate-limiting factor in Oligo-P-P-Dol synthesis, and strongly suggest that increases in IPTase activity and the rate of de novo Dol-P biosynthesis enhance the capacity of embryonic rat brain cells for lipid intermediate synthesis early in the developmental program for N-linked glycoprotein biosynthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effect of squalestatin 1 (SQ) on squalene synthase and other enzymes utilizing farnesyl pyrophosphate (F-P-P) as substrate was evaluated by in vitro enzymological and in vivo metabolic labeling experiments to determine if the drug selectively inhibited cholesterol biosynthesis in brain cells. Direct in vitro enzyme studies with membrane fractions from primary cultures of embryonic rat brain (IC50 = 37 nM), pig brain (IC50 = 21 nM), and C6 glioma cells (IC50 = 35 nM) demonstrated that SQ potently inhibited squalene synthase activity but had no effect on the long-chain cis-isoprenyltransferase catalyzing the conversion of F-P-P to polyprenyl pyrophosphate (Poly-P-P), the precursor of dolichyl phosphate (Dol-P). SQ also had no effect on F-P-P synthase; the conversion of [3H]F-P-P to geranylgeranyl pyrophosphate (GG-P-P) catalyzed by partially purified GG-P-P synthase from bovine brain; the enzymatic farnesylation of recombinant H-p21ras by rat brain farnesyltransferase; or the enzymatic geranylgeranylation of recombinant Rab1A, catalyzed by rat brain geranylgeranyltransferase. Consistent with SQ selectively blocking the synthesis of squalene, when C6 glial cells were metabolically labeled with [3H]mevalonolactone, the drug inhibited the incorporation of the labeled precursor into squalene and cholesterol (IC50 = 3–5 µM) but either had no effect or slightly stimulated the labeling of Dol-P, ubiquinone (CoQ), and isoprenylated proteins. These results indicate that SQ blocks cholesterol biosynthesis in brain cells by selectively inhibiting squalene synthase. Thus, SQ provides a useful tool for evaluating the obligatory requirement for de novo cholesterol biosynthesis in neurobiological processes without interfering with other critical reactions involving F-P-P.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Pig brain microsomes catalyzed the enzymatic transfer of radiolabeled isoprenyl groups from [1-14C] isopentenyl pyrophosphate ([1-MC] I-P-P) into long-chain polyisoprenyl pyrophosphates (Poly-P-P) and unidentified neutral lipids. The brain isoprenyltransferase activity synthesizing the Poly-P-P (1) required 5 mM Mg2+ and 10 mM vanadate ions for maximal activity; (2) exhibited an apparent Km of 8 μM I-P-P; (3) utilized exogenous farnesyl pyrophosphate and two stereoisomers of geranylgeranyl pyrophosphate as substrates; (4) was optimal at pH 8.5; and (S) was stimulated by dithiothreitol. The major products were identified as C90and Q95 allyhic Poly-P-P on the basis of the following chemical and chromatographic properties: (1) the intact product cochromatographed with authentic Poly-P-P on silica-gel-impregnated paper, (2) the major product was converted to a compound chromatographically identical to polyisoprenyl monophosphate (Poly-P) by alkaline hydrolysis; (3) treatment of the labeled Poly-P with wheat germ acid phosphatase or mild acid yielded neutral labeled products; (4) the KOH hydrolyzed product coeluted with authentic Poly-P from lipophilic Sephadex LH-20; and (5) the labeled lipids produced by enzymatic dephosphorylation had mobilities identical to fully unsaturated polyisoprenols containing 18 (C90) and 19 (Q95) isoprene units when analyzed by reverse-phase chromatography. When subcellular fractions from rat brain gray matter were compared, the highest specific activity was found in the heavy microsomes. These results demonstrate that brain contains an isoprenyltransferase activity, associated with the rough endoplasmic reticulum, capable of synthesizing long-chain Poly-P-P. The enzymatic reactions by which the Poly-P-P intermediate is converted to dolichyl phosphate remain to be elucidated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 70 (1998), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: It is well documented that 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors prevent cultured mammalian cells from progressing through the cell cycle, suggesting a critical role for a mevalonate-derived product. Recently, it has been shown that free geranylgeraniol (GG-OH) and farnesol (F-OH) can be utilized by C6 glioma cells for protein isoprenylation. The ability of GG-OH and F-OH to restore protein geranylgeranylation or farnesylation selectively has enabled us to examine the possibility that mevalonate is essential for cell proliferation because it is a precursor of farnesyl pyrophosphate or geranylgeranyl pyrophosphate, the isoprenyl donors involved in the post-translational modification of key regulatory proteins. In this study we report that GG-OH, as well as mevalonate, overcomes the arrest of cell proliferation of C6 glioma cells treated with lovastatin, as assessed by increased cell numbers and a stimulation in [3H]thymidine incorporation. The increase in cell number and [3H]thymidine incorporation were significantly lower when F-OH was added. Under these conditions [3H]mevalonate and [3H]GG-OH are actively incorporated into a set of isoprenylated proteins in the size range of small, GTP-binding proteins (19–27 kDa) and a polypeptide with the molecular size (46 kDa) of the smaller isoform of 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Analysis of the proteins metabolically labeled by [3H]mevalonate and [3H]GG-OH reveals the presence of labeled proteins containing geranylgeranylated cysteinyl residues. Consistent with geranylgeranylated proteins playing a critical role in the entry of C6 cells into the cell cycle, a (phosphonoacetamido)oxy derivative of GG-OH, a drug previously shown to interfere with protein geranylgeranylation, prevented the increase in cell number when mevalonate or GG-OH was added to lovastatin-treated cells. These results strongly suggest that geranylgeranylated proteins are essential for progression of C6 cells into the S phase of the cell cycle and provide the first evidence that the “salvage” pathway for the utilization of the free isoprenols is physiologically significant in the CNS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...