Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 2956-2966 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Adhesively bonded elastic layers with thicknesses that are small relative to their lateral dimensions are used in a wide variety of applications. The mechanical response of the compliant layer when a normal stress is imposed across its thickness is determined by the effects of lateral constraints, which are characterized by the ratio of the lateral dimensions of the layer to its thickness. From this degree of confinement and from the material properties of the compliant layer, we predict three distinct deformation modes: (1) edge crack propagation, (2) internal crack propagation, and (3) cavitation. The conditions conductive for each mode are presented in the form of a deformation map developed from fracture mechanics and bulk instability criteria. We use experimental data from elastic and viscoelastic materials to illustrate the predictions of this deformation map. We also discuss the evolution of the deformation to large strains, where nonlinear effects such as fibrillation and yielding dominate the failure process. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Macromolecular Chemistry and Physics 199 (1998), S. 489-511 
    ISSN: 1022-1352
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: We describe a general, linearized fracture mechanics analysis for studying the adhesive properties of elastic, low modulus materials. Several adhesion tests are described, but all involve an elastic material which is brought into contact with a rigid surface along an axis of radial symmetry. Relationships between the load, displacement, and radius of the circular contact area between the two materials are described. These relationships involve the elastic modulus of the compliant material, the energy release rate (or adhesion energy) and various parameters which characterize the geometry of interest. The ratio of the contact radius to the thickness of the elastic material is shown to be a particularly important parameter. After reviewing some general concepts relevant to the adhesion of soft polymeric materials, we describe the fracture mechanics analysis, and provide examples from our own work on the adhesion of elastomers, thermoreversible gels and pressure sensitive adhesives.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...