Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 153 (1981), S. 64-74 
    ISSN: 1432-2048
    Keywords: Abscisic acid ; Brassica ; Embryo development ; Storage proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Immature embryos of Brassica napus were cultured in vitro with and without various concentrations of germination inhibitors, and the progress of embryogeny was monitored by comparing accumulation of storage proteins in culture with the normal accumulation in seeds. The two major B. napus storage proteins (12S and 1.7S) were purified from seed extracts and analyzed by rocket immunoelectrophoresis (12S protein) or by sodium lauryl sulfate polyacrylamide gel electrophoresis (1.7S protein). During embryo development within seeds both the 12S and 1.7S proteins were first detected when the cotyledons were well developed (embryo dry weight, 0.4 mg), and each storage protein accumulated at an average rate of 26 μg d-1 during maximum deposition. Accumulation of the 1.7S protein stopped when the water content of the embryo began to decline (embryo DW, 2.7 mg), but accumulation of the 12S protein continued until seed maturity (embryo DW, 3.6 mg). At the end of embryo development the 12S and the 1.7S proteins comprised approx. 60 and 20% of the total salt-soluble protein, respectively. When embryos were removed from seeds at day 27, just as storage protein was starting to accumulate, and placed in culture on a basal medium, they precociously germinated within 3d, and incorporation of amino acids into the 12S storage protein dropped from 3% of total incorporation to less than 1%. If 10-6 M abscisic acid (ABA) was included in the medium, amino-acid incorporation into the 12S protein increased from 3% of total incorporation when embryos were placed into culture to 18%, 5d later, and the accumulation rate (27.1±2.6 μg embryo-1 d-1) matched the maximum rate observed in the seed. High osmotica, such as 0.29 M sucrose or mannitol, added to the basal medium, also inhibited precocious germination, but there was a lag period before 12S-protein synthesis rates equaled the rates on ABA media. These results indicate that some factor in the seed environment is necessary for storage-protein synthesis to proceed, and that ABA is a possible candidate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 162 (1984), S. 125-131 
    ISSN: 1432-2048
    Keywords: Brassica (precocious germination) ; Embryo maturation ; Germination (seeds) ; Stor age protein ; mRNA (storage protein)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We compared the germination of Brassica napus L. embryos at three stages of development-mid-cotyledon, maturation and mature dry-to determine at which stage they acquired the capacity for normal germination and seedling development. Embryos were removed from the seed and cultured on hormone-free medium, allowing them to germinate. The transition from embryogeny to germination was monitored both morphologically and biochemically, using synthesis of 12 S storage protein as a marker of embryogeny. The mature embryos (dry seeds) set the standard for normal seedling development: radicle emergence, hypocotyl extension and cotyledon expansion occurred within 2 d and true leaves were formed within a week of germination. Rocket immunoelectrophoresis indicated that the storage proteins in seedlings from mature dry embryos were completely degraded within a week. In contrast, the midcotyledon-stage embryos appeared to germinate abnormally, retaining many embryonic characteristics. Although the roots emerged, the hypocotyls did not elongate and secondary cotyledons instead of leaves were formed at the shoot apex. Also, the seedlings continued to synthesize and accumulate storage proteins. The maturation-stage embryos did develop into normal-looking seedlings, but complete degradation of storage proteins required several weeks, presumably reflecting continued synthesis and turnover. We conclude that embryogenic and germination-specific processes can occur concurrently and that the capacity to develop as normal seedlings is acquired gradually during the maturation process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Planta 156 (1982), S. 520-524 
    ISSN: 1432-2048
    Keywords: Anther culture ; Brassica ; Storage protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The storage-protein content of non-zygotic and zygotic embryos of B. napus was compared, using antibodies to guantitate 12S storage protein in extracts by rocket immunoelectrophoresis. Non-zygotic embryos were induced from microspores in anther culture and on the hypocotyls of zygotic embryos in culture. All embryo-like structures were found to contain 12S storage protein, whereas preculture anthers, anthers from which embryos had been removed, and regenerated shoots did not have detectable 12S storage protein. In zygotic embryos, 12S storage protein was first detected at the cotyledon stage, but microsporic embryos contained storage protein at the globular and heart stages. Storage protein levels in microsporic and hypocotyl embryos were low relative to those in zygotic embryos. The largest microsporic embryo had a storage protein concentration of 13 μg mg-1 fresh weight, almost 10 times lower than a mature zygotic embryo. Thus, although storage proteins are present in both zygotic and non-zygotic embryos, the timing and extent of accumulation differ.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 19 (1992), S. 1049-1055 
    ISSN: 1573-5028
    Keywords: Brassica napus ; rapeseed ; gene expression ; nucleotide sequence ; storage proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have isolated a five-member gene subfamily which encodes cruciferin, a legumin-like 12S storage protein of Brassica napus L., and have analyzed the structure and expression of the family members in developing embryos. Sequence analysis has shown that the coding regions of all five genes are highly similar, with the two most divergent members of the family retaining 89% sequence identity. The analysis of this cruciferin gene family's expression indicates that the developmental pattern of expression of each gene is similar, and the steady-state mRNA levels of each gene are approximately equivalent to each other at all developmental stages.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5028
    Keywords: abscisic acid ; Brassica ; desiccation ; late embryogenesis-abundant (Lea) mRNA ; seed maturation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have analyzed the nucleotide sequence and accumulation of an mRNA which is prevalent in seeds of Brassica napus L. During normal development, the mRNA begins to accumulate during late embryogeny, is stored in dry seeds, and becomes undetectable in seedlings within 24 hours after imbibition. Moreover, abscisic acid treatment of embryos precociously induces or enhances accumulation of the mRNA. Nucleotide sequencing studies show that the deduced 30 kDa polypeptide has an unusual primary structure; the polypeptide possesses direct amino acid sequence repeats and is virtually entirely hydrophilic with the exception of a hydrophobic carboxyl-terminal region. Based upon the expression pattern and predicted polypeptide sequence, we conclude that the mRNA is encoded by a late embryogenesis-abundant (Lea) gene in B. napus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: Brassica napus ; embryogenesis ; napin gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract S1 nuclease analysis and sub-family-specific oligonucleotide probes were used to characterize the expression during embryogenesis of the napin storage protein gene family ofBrassica napus (oilseed rape). The expression of one sub-class represented by the napin gene gNa peaks and declines earlier than the other members of the family. This sub-class was highly expressed representing ca. 20% of napin mRNA at 26 days after anthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of agricultural and environmental ethics 8 (1995), S. 98-111 
    ISSN: 1573-322X
    Keywords: biotechnology ; sustainable agriculture ; subsistence ; women farmers ; genetic engineering ; agricultural ethics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Philosophy
    Notes: Abstract Biotechnology increases commercialization of food production, which competes with food for home use. Most people in the world grow their own food, and are more secure without the mediation of the market. To the extent that biotechnology enhances market competitiveness, world food security will decrease. This instability will result in a greater gap between rich and poor, increasing poverty of women and children, less ability and incentive to protect the environment, and greater need for militarization to maintain order. Therefore, biotechnology should be discouraged. An active program to protect and strengthen local food production and to decrease reliance on industrial agriculture should be promoted.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5028
    Keywords: Brassica napus ; cDNA clone ; legumin ; nucleotide sequence ; proteolytic processing ; seed storage proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The most abundant protein in seeds of Brassica napus (L.) is cruciferin, a legumin-like 12S storage protein. By in vitro translation of embryo RNA, and pulse-chase labelling of cultured embryos with 14C-leucine, we have shown that the 30 kd α polypeptides and 20 kd β polypeptides of cruciferin are synthesized as a family of 50 kd precursors which are cleaved post-translationally. One member of the cruciferin family was cloned from embryo cDNA and sequenced. The nucleotide sequence of the cruciferin cDNA clone, pC1, contains one long open reading frame, which originates in a hydrophobic signal peptide region. Therefore, the complete sequence of the cruciferin mRNA was obtained by primer extension of the cDNA. The predicted precursor polypeptide is 488 amino acids long, including the 22 amino acids of the putative signal sequence. The amino acid composition of cruciferin protein is very similar to the predicted composition of the precursor. Comparison with an amino acid sequence of legumin from peas, deduced from the nucleotide sequence of a genomic clone, shows that the α polypeptide precedes the β polypeptide on the precursor. Cruciferin and legumin share 40% homology in the regions which can be aligned. However, cruciferin contains a 38 amino acid region high in glutamine and glycine in the middle of the α subunit, which is absent in legumin. Legumin has a highly charged region, 57 amino acids long, at the carboxyl-end of the α subunit, which is not found in cruciferin. Both of these regions appear to have originated by reiteration of sequences. re]19850513 ac]19850715
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...