Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Helvetica Chimica Acta 80 (1997), S. 897-911 
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An optically active molecular cleft incorporating a 9,9′-spirobi[9H-fluorene] spacer and two N-(5,7-dimethyl-1,8-naphthyridin-2-yl)carboxamide: (CONH(naphthyr)) moieties as H-bonding sites was covalently bound to silica gel to provide the new chiral stationary phase (CSP) (R)-16 (Scheme 2). Previous solution-binding studies in CDCl3 had shown that the anchored molecular cleft was capable of complexing optically active dicarboxylic acids with differences in free energy of the formed diastereoisomeric complexes (Δ(ΔG0)) between 0.5 and 1.6 kcal mol-1 (T = 300 K). The optical resolution of racemic dicarboxylic acids, that are bound with a high degree of enantioselectivity in the liquid phase, was now achieved by HPLC on the CSP (R)-16. The order of enantiomer elution was as predicted from the solution studies, and the separation factor α varied between 1.18 and 1.24. A series of 1,1′-binaphthalene-2,2′-diol derivatives were also resolved on the new CSP, in some cases with baseline separation. The order of enantiomer elution under normal-phase chromatographic conditions was rationalized by computer modeling of the association between the solute enantiomers and the immobilized molecular cleft. HPLC Separations with eluents of different polarity suggested that the attractive interactions between solute and immobilized chiral selector are a combination of H-bonding, which prevails in apolar eluents, and aromatic π--π stacking, which dominates in polar eluents.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The molecular clefts (R)- and (S)-3, incorporating 9,9′-spirobi[9H-fluorene] as a spacer and two N-(5,7-dimethyl-1,8-naphthyridin-2-yl)carboxamide (CONH(naphthy)) units as H-bonding sites were prepared via the bis(succinimid-N-yl esters) of (R)-and (S)-9,9′-spirobi[9H-fluorene]-2,2′-dicarboxylic acid (5). Derivative 6, with one CONH(naphthy) unit and one succinimid-N-yl ester residue allowed easy access to spirobifluorene clefts with two different H-bonding sites, as exemplified by the synthesis of 4. Binding studies with (R)- and (S)-3 and optically active dicarboxylic acids in CDCl3 exhibited differences in free energy of the formed diastereoisomeric complexes (Δ(ΔGº)) between 0.5 and 1.6 kcal mol-1 (T 300 K). Similar enantioselectivities were observed with the spirobifluorene clefts (R)- and (S)-1, bearing two N-(6-methylpyridin-2-yl)carboxamide (CONH(py)) H-bonding sites. The thermodynamic quantities ΔHº and ΔSº for the recognition processes with (R)- and (S)-1 were determined by variable-temperature 1H-NMR titrations and compared to those with (R)- and (S)-2, which have two CONH(py) moieties attached to the 6,6′-positions of a conformationally more flexible 1,1′-binaphthyl cleft. All association processes showed high enthalpic driving forces which are partially compensated by unfavorable changes in entropy. Pyranosides bind to the optically active clefts 1 and 3 in CDCl3 with -ΔGº = 3.0-4.3 kcal mol-1. Diastereoisomeric selectivities up to 1.2 kcal mol-1 and enantioselectivities up to 0.4 kcal mol-1 were observed. Cleft 4 and N-(5,7-dimethyl-1,8-naphthyridin-2-yl)acetamide (25) complexed pyranosides 22-24 as effectively as 3 indicating that only one CONH(naphthy) site in 3 associates strongly with the sugar derivatives. Based on the X-ray crystal structure of 3, a computer model for the complex between (S)-3 and pyranoside 22 was constructed. Molecular-dynamics (MD) simulations showed that differential geometrical constraints are at the origin of the high enantioselectivity in the complexation of dicarboxylic acid (S)-7 by (R)- and (S)-1 and (R)- and (S)-3.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...