Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Keywords Adipose tissue ; insulin sensitivity ; insulin tolerance test ; insulin receptor tyrosine-kinase inhibitors ; tumour necrosis factor-α ; PC-1.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the present study we measured PC-1 content, tumour necrosis factor (TNF)-α gene expression, and insulin stimulation of insulin receptor tyrosine-kinase activity in adipose tissue from non-obese, non-diabetic subjects. These parameters were correlated with in vivo insulin action as measured by the intravenous insulin tolerance test (Kitt values). PC-1 content was negatively correlated with Kitt values (r = –0.5, p = 0.04) and positively with plasma insulin levels both fasting (r = 0.58, p = 0.009) and after 120 min during oral glucose tolerance test (OGTT) (r = 0.67, p = 0.002). Moreover, adipose tissue PC-1 content was higher in relatively insulin-resistant subjects (Kitt values lower than 6) than in relatively insulin-sensitive subjects (Kitt values higher than 6) (525 ± 49 ng/mg protein vs 336 ± 45, respectively, p = 0.012). Adipose tissue insulin receptor tyrosine-kinase activity in response to insulin was significantly lower at all insulin concentrations tested (p = 0.017, by two-way analysis of variance test) in insulin-resistant than in insulin-sensitive subjects (Kitt values lower or higher than 6, respectively). In contrast to PC-1, no significant correlation was observed between adipose tissue TNF-α mRNA content and Kitt values, and plasma insulin levels, both fasting and at after 120 min during OGTT. Also, no difference was observed in TNF-α mRNA content between subjects with Kitt values higher or lower than 6. These studies in adipose tissue, together with our previous studies in skeletal muscle raise the possibility that PC-1, by regulating insulin receptor function, may play a role in the degree of insulin sensitivity in non-obese, non-diabetic subjects. [Diabetologia (1997) 40: 282–289]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Insulin receptor ; alternative splicing ; hyperinsulinism ; insulin resistance ; insulinoma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Alternative splicing of the 36-base pair exon 11 of the human insulin receptor gene results in the synthesis of two insulin receptor isoforms with distinct functional characteristics (the isoform containing exon 11 has lower insulin binding affinity and lower internalization rate). Altered expression of these insulin receptor isoforms has been previously demonstrated in skeletal muscle of patients with non-insulin-dependent diabetes mellitus (NIDDM). However, this observation was not confirmed by other studies and is still a matter of controversy; furthermore, it is not known whether it represents a primary event or is secondary to hyperinsulinaemia and insulin resistance. In order to address this issue in patients with pure non-genetically determined hyperinsulinaemia, we examined the alternative splicing of insulin receptor mRNAs in skeletal muscle of eight patients with surgically confirmed insulinoma and insulin resistance and in eight healthy subjects, using the reverse transcriptase-polymerase chain reaction technique. The insulinoma patients displayed a significant increase in the expression of the insulin receptor isoform containing exon 11 (75.7±2.3%) when compared with normal subjects (57.9±1.5%); furthermore, this increase was positively correlated with plasma insulin concentration and negatively correlated with in vivo insulin sensitivity (glucose clamp). In conclusion, the increased expression of the insulin receptor isoform with lower insulin binding affinity in patients with primary non-genetically determined hyperinsulinaemia supports a role for insulin in the regulation of alternative splicing of insulin receptor pre-mRNA and suggests that in NIDDM an altered receptor isoform distribution might be secondary to the ambient hyperinsulinaemia rather than representing a primary defect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...