Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 689 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Journal of neuroendocrinology 15 (2003), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Conventional extracellular recordings were made from single cells in the suprachiasmatic nucleus (SCN) region of the anaesthetized rat. Each cell was tested for its response to stimulation at three sites; the contralateral optic nerve, the ipsilateral supraoptic nucleus (SON) or the ipsilateral arcuate nucleus (ARC) to determine whether the behaviour of the synapses in the SCN was different at different times. Responses to stimulation were tested once each hour and assessed by creating peristimulus time histograms. Excitatory, inhibitory or complex (consisting of more than one component) responses were seen. The responses of some cells that were recorded for several hours changed with time. Changes were seen in the responses of SCN cells to stimulation of the ARC (31/91 cells) and the SON (26/90 cells) regions, but only rarely to stimulation of the optic nerve (2/72 cells). Such differences in proportion are unlikely to have occurred by chance (P 〈 0.001; chi-square test). Changes seen included the appearance of both excitatory and inhibitory responses in cells that were initially unresponsive. In some cells, one component of a complex response remained constant while another component changed with time. When the cells in the SCN were treated as a group, the proportion of excitatory, inhibitory or complex responses to ARC stimulation did not remain constant throughout the light/dark cycle (P = 0.014; chi-square test). The proportion of excitatory, inhibitory or complex responses to SON and optic nerve stimulation showed no significant variation with the light/dark cycle. If a change in response can be interpreted as a change in the behaviour of a neural connection, the results imply that some of the projections to the SCN from within the hypothalamus change at different times of the light/dark cycle, whereas no change could be seen in the input from the optic nerve. Thus, some of the connections of the SCN appear not to be hard wired, but change rapidly with time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 9 (1997), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Secretion of vasopressin (VP) and oxytocin (OT) displays a daily rhythm. Using electrophysiological methods, we investigated the projections from the optic nerve to the supraoptic nucleus (SON) and its perinuclear zone (PNZ) which might underlie the rhythm. Extracellular recordings were made from magnocellular cells in the SON and its PNZ in 22 urethane-anaesthetized female Wistar rats while stimulating the optic nerve. The responses of magnocellular and PNZ cells were classified as orthodromic excitatory (OD+) or inhibitory (OD-) after creating peri-stimulus time histograms (PSTHs). Twenty-six of 73 (35.6%) VP and OT cells and 16 of 42 (38.1%) PNZ cells were excited by optic nerve stimulation. PNZ cells displayed both short (for 7 cells 30 ms or less) and long (〉60 ms) latency responses. Most (6/7) short latency responses had a short duration but longer latency responses were longer. No magnocellular cells showed responses with both short latency and short duration. Short latency responses with a short duration probably reflect direct monosynaptic inputs whereas longer latency responses with longer duration may reflect complex inputs. Thus the retina projects to the PNZ and to the SON but the PNZ receives a stronger direct input. Such projections might provide a light-related input to SON cells and suggest a role for the PNZ in this input.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 16 (2004), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Novel approaches to the characterization of coding carried by spike trains are discussed. Measuring firing frequency alone may only partially reflect spike patterning, and can only quantify changes of the most obvious kind. We have devised a method that combines probabilistic and information approaches to quantify the variability of the interspike intervals in a way that is independent of spike frequency. To illustrate the technique, the firing of an oxytocin cell and a vasopressin cell were compared before and after osmotic stimulation. A bimodal lognormal function was fitted to the interspike interval histograms. The entropy of the log interval histogram was used to measure the variability of intervals and to reflect the coding capacity of the cell per spike. A perfect metronome shows no variability in interval and thus has no greater coding capacity than is conveyed by its frequency, whereas the variability of intervals of magnocellular neurones means that their irregular activity has greater potential for coding. While the mean spike frequency increased in both the oxytocin and vasopressin cells in response to osmotic stimulation, the changes in their irregularity showed differences. Osmotic stimulation reduced the entropy of the oxytocin cell, reflecting an increase in the regularity of its spike activity. Conversely, osmotic stimulation had little effect on the entropy of the vasopressin cell. Such differences are not evident from a simple inspection of ratemeter activity. The comparison highlights the limitations of mean spike frequency as a measure of spike coding. Parameters based on the interspike intervals constitute informative measures of spike activity that allow objective comparisons to be made between the activity under different physiological conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neuroendocrinology 3 (1991), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Intracellular recordings were made from cells in the hypothalamic supraoptic nucleus in the urethane-anaesthetized male rat using the ventral surgical approach. Impalements lasted from 5 min to 1 h and recorded cells had an input resistance of 55 to 170 megohms. Spikes of over 50 mV were recorded from 14 cells which could be antidromically activated by stimulation of the neural stalk. The spikes showed a hyperpolarizing afterpotential and the broadening characteristic of rapidly firing magnocellular neurons, which recovered rapidly (〈200 ms). When depolarized, the cells showed evidence of a transient potassium current. Recurrent synaptic coupling between the recorded cell and adjacent cells would be expected to alter the hyperpolarizing afterpotential of an antidromic spike as compared with a spontaneous spike; no perceptible difference in the waveforms of the different types of spike could be detected in 11 spontaneously active cells. Application of just subthreshold stimuli to the neural stalk did not evoke depolarizing or hyperpolarizing potentials. Suprathreshold shocks to the neural stalk, when the antidromic spike was prevented by collision, also had no discernible effect on membrane potential. Thus intracellular recordings from magnocellular neurons in vivo revealed electrophysiological properties similar to those seen in vitro. No evidence for synaptic interconnection between magnocellular neurons was found in male rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Neurohypophysical hormone release, and the electrical activity of single neurons of the supraoptic nucleus, were monitored in urethane-anaesthetized rats. Immediately after electrolytic lesions of the region anterior and ventral to the third ventricle (AV3V region), supraoptic neurons showed little spontaneous activity and their responses to ip injection of hypertonic saline were severely impaired; corresponding deficits were found in the secretion of both oxytocin and vasopressin. Similar deficits in oxytocin secretion were also found in rats following electrolytic lesions which destroyed all or part of the subfornical organ; however the effects of the lesions were not additive: rats with lesions of both the AV3V region and the subfornical organ region showed a similar degree of impairment of osmotically stimulated oxytocin secretion to rats with lesions of either site alone. Such deficits might occur either as a result of destruction of osmoresponsive projections to the magnocellular nuclei, or as a result of destruction of an afferent input which is essential for the full expression of the innate osmosensitivity of supraoptic neurons. To test the latter possibility, supraoptic neurons in AV3V-lesioned rats were activated by continuous application of glutamate, and then tested with ip injection of hypertonic saline. Five of seven cells tested responded significantly to the hyperosmotic stimulus, though the responses were significantly weaker than observed in sham-lesioned rats. We suggest that the innate osmosensitivity of supraoptic neurons does contribute to their responses to systemic osmotic stimulation, but that expression of this innate osmosensitivity requires inputs from the AV3V region and/or the subfornical organ, some of which may also be osmoresponsive. Electrical stimulus pulses applied to the AV3V region influenced the electrical activity of most supraoptic neurons strongly: the predominant response was a short-latency, short-duration inhibition followed by long-latency, long-duration excitation. Whereas intracerebroventricular administration of the angiotensin II antagonist saralasin reduced spontaneous or osmotically induced activity of supraoptic neurons, the neuronal responses to AV3V stimulation were impaired only with relatively high doses of saralasin. We conclude that angiotensin ll-sensitive neurons are an important component of the afferent pathways that sustain the excitability of supraoptic neurons, but that angiotensin is probably not the major transmitter of the projection from the AV3V region to the supraoptic nucleus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 16 (2004), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: To determine whether the daily rhythms of spike activity in the supraoptic nucleus (SON) were accompanied by changes in the behaviour of its inputs, we used conventional extracellular single cell recordings from cells in the SON of anaesthetized rats while stimulating the contralateral optic nerve and the ipsilateral suprachiasmatic nucleus (SCN). Neurones in the SON region were identified by antidromic activation and classified as oxytocin or vasopressin cells, on the basis of their spontaneous firing patterns. Approximately 27% of both oxytocin (29/108) and vasopressin (39/147) neurones were excited by stimulation of the optic nerve, and the majority of responses had a long latency (〉20 ms). Very few oxytocin (3/108) and vasopressin cells (2/147) were inhibited by stimulation of the optic nerve. The pattern of the responses (excitatory, inhibitory or nonresponsive) of oxytocin and vasopressin cells to stimulation of the optic nerve was significantly related to the time of day (chi-square test; P = 0.012, oxytocin cells; P = 0.006, vasopressin cells). The proportion of oxytocin cells excited by stimulation of the optic nerve was highest at ZT 4–8 and lowest at ZT 20–24. For vasopressin cells, it was highest at ZT 12–16 and lowest at ZT 20–24. The proportion of excitatory, inhibitory and complex responses seen in oxytocin and vasopressin cells following stimulation of the SCN also changed and was significantly different at different times of day (oxytocin cells: highest proportion of excitatory responses at ZT 12–16, P = 0.029; chi-square test; vasopressin cells: highest proportion of excitatory responses at ZT 0–4, P = 0.005; chi-square test). Thus, inputs to oxytocin and vasopressin neurones from the optic nerve and some outputs from the SCN changed during the light/dark cycle. Such changes may contribute to the generation of 24-h rhythms in activity of oxytocin and vasopressin neurones and release of the peptides.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 12 (2000), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Extracellular recordings were made from supraoptic nucleus (SON) cells in urethane anaesthetized male rats in vivo. Two stimulating electrodes were positioned to activate the cells antidromically, one in the mid axon region of the cells and the other at the axon terminals. Trains of 5–20 just-subthreshold stimuli at 5 s intervals decreased the threshold for antidromic activation from both sites. Whereas neither single stimuli, nor the stimuli at the beginning of a train of 20 stimuli evoked antidromic action potentials, later action potentials did so. Paradoxically, trains of 20 just-suprathreshold stimuli increased the threshold for activation of both axons and terminals. In recordings from the same cells, stimuli were applied singly at 5 s intervals at an intensity which almost invariably evoked an antidromic action potential. Identical stimuli were then applied in trains of 20 stimuli at 50 Hz. After the first train, the initial stimulus pulses of the trains frequently fell below threshold. Following a conditioning train of five stimuli applied to one electrode, the period of decreased threshold (increased excitability) at the other electrode lasted less than 100 ms and the period of increased threshold (decreased excitability) after 12 trains of 20 stimuli lasted between 5 and 10 s. Both decreased and increased excitability were seen at axons and terminals of both putative oxytocin and vasopressin cells. Since the excitability changes were shown in vivo at frequencies encountered during recordings, it is likely that they influence the probability of spike propagation and hormone secretion under physiological conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 689 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 255 (1975), S. 414-415 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In the present study we have investigated the effects of Br-X537A, a derivative of Lasalocid, on hormone release from and 45Ca movements in the neurohypophysis. The results show that this ionophore is much more potent than X537A. In the absence of any other stimulus the addition of Br-X537A to the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...