Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chester : International Union of Crystallography (IUCr)
    Journal of synchrotron radiation 8 (2001), S. 1054-1055 
    ISSN: 1600-5775
    Source: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Topics: Geosciences , Physics
    Notes: A method for the fabrication of linear transmission Fresnel zone plates for X-rays in the 8–15 keV photon energy range is presented. The diffractive elements are generated by electron-beam lithography and chemical wet etching of 〈110〉-oriented silicon membrane substrates. Diffractive structures with aspect ratios of more than 30 for 300 nm-wide structures were obtained. The diffraction efficiency of such a lens was measured for 13.3 keV radiation to be 20%.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 345 (1990), S. 336-338 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Guerrero gap in southern Mexico is perhaps one of the more clearly identified seismic gaps in the circum-Pacific belt1"3. It lies immediately south of the rupture area of the 1985 Michoacan earthquake4'5 (Fig. 1). A telemetered, nine-station seismic network northwest of Acapulco (Fig. 1) ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1420-9136
    Keywords: Permeability ; compaction ; fluid pressure generation ; effective pressure ; fault mechanics ; fault hydraulics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Permeability exerts significant control over the development of pore pressure excess in the crust, and it is a physical quantity sensitively dependent on the pore structure and stress state. In many applications, the relation between permeability and effective mean stress is assumed to be exponential and that between permeability and porosity is assumed to be a power law, so that the pressure sensitivity of permeability is characterized by the coefficient γ and the porosity sensitivity by the exponent α. In this study, we investigate experimentally the dependence of permeability on pressure and porosity in five sandstones with porosities ranging from 14% to 35% and we review published experimental data on intact rocks, unconsolidated materials and rock fractures. The laboratory data show that the pressure and porosity sensitivities differ significantly for different compaction mechanisms, but for a given compaction mechanism, the data can often be approximated by the empirical relations. The permeabilities of tight rocks and rock joints show relatively high pressure sensitivity and low porosity sensitivity. A wide range of values for α and γ have been observed in relation to the mechanical compaction of porous rocks, sand and fault gouge, whereas the porosity sensitivity for chemical compaction processes is often observed to be given by α≈3. We show that since the ratio γ/α corresponds to the pore compressibility, the different dependences of permeability on porosity and pressure are related to the pore structure and its compressibility. Guided by the laboratory data, we conduct numerical simulations on the development of pore pressure in crustal tectonic settings according to the models ofWalder andNur (1984) andRice (1992). Laboratory data suggest that the pressure sensitivity of fault gouge is relatively low, and to maintain pore pressure at close to the lithostatic value in the Rice model, a relatively high influx of fluid from below the seismogenic layer is necessary. The fluid may be injected as vertically propagating pressure pulses into the seismogenic system, andRice's (1992) critical condition for the existence of solitary wave is shown to be equivalent to α〉1, which is satisfied by most geologic materials in the laboratory. Laboratory data suggest that the porosity sensitivity is relatively high when the permeability is reduced by a coupled mechanical and chemical compaction process. This implies that in a crustal layer, pore pressure may be generated more efficiently than cases studied byWalder andNur (1984) who assumed a relatively low porosity sensitivity of α=2.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...