Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Under stress conditions, the facultative intracellular pathogen Listeria monocytogenes produces a ClpC ATPase, which is a general stress protein encoded by clpC and belonging to the HSP-100/Clp family. A ClpC-deficient mutant was obtained by gene disruption in strain LO28, which became highly susceptible to stress conditions in vitro. Intracellular growth of this mutant was restricted within macrophages, one of the major target cells of L. monocytogenes, during the infectious process. A quantitative electron microscope study showed that, contrary to wild-type bacteria that rapidly gain access to the cytoplasm of macrophages, mutant bacteria remained confined to membrane-bound phagosomes. Only a few mutant bacteria disrupted the phagosome membrane after 4 h of incubation, then polymerized actin filaments and multiplied within the cytoplasm. The ClpC ATPase, therefore, promotes early bacterial escape from the phagosome of macrophages, thus enhancing intracellular survival. The ClpC ATPase was produced in vivo during experimental infection by wild-type bacteria. The virulence of the ClpC-deficient mutant was severely attenuated in mice, with a three-log decrease in its 50% lethal dose compared with wild-type bacteria. Bacterial growth of mutant bacteria was strongly restricted in organs, presumably because of an impairment of intracellular survival in host tissues. Our results provide evidence that a general stress protein is required for the virulence of L. monocytogenes, which behaves as a virulence factor promoting intracellular survival of this pathogen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Systematic thin layer chromatographic (TLC) analysis of apolar lipids in Mycobacterium kansasii revealed the presence of a previously uncharacterized novel component. The product was ubiquitously found in a panel of M. kansasii clinical isolates, as well as other pathogenic and non-pathogenic mycobacterial species. TLC analysis of [14C]-acetate- or [14C]-glycerol-labelled M. kansasii cultures tentatively assigned the novel product as an unusual triacylglycerol-related lipid. Subsequent purification, followed by structural determination using 1H-nuclear magnetic resonance (NMR) and electrospray mass spectrometry (ES/MS), led to the identification of this product as a monomeromycolyl-diacylglycerol (MMDAG). Treatment of M. kansasii with either isoniazid (INH), a well-known type II fatty acid synthase (FAS-II) and mycolic acid biosynthesis inhibitor, or tetrahydrolipstatin (THL), a drug approved for treating obesity, correlated with a reduced incorporation of [14C]-acetate into both mycolic acids and MMDAG. Addition of INH or THL to the cultures induced major morphological changes and, surprisingly, resulted in an increased number of lipid storage bodies, as determined by electron microscopy. The potent antimycobacterial activity of THL was confirmed against a variety of mycobacterial species, including INH-susceptible and -resistant Mycobacterium tuberculosis strains. Therefore, THL and other β-lactones may be promising drugs for the development of new antitubercular therapy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature medicine 11 (2005), S. 18-19 
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] In response to conditions ranging from starvation to hormone treatment, cells undergo a carefully orchestrated process of self-consumption. During autophagy cytoplasmic organelles and portions of cytoplasm are sequestered in double-membrane bound vacuoles called nascent autophagosomes or autophagic ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...