Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta biotheoretica 28 (1979), S. 75-97 
    ISSN: 1572-8358
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The objective of this paper is to present a new theory of synaptic function in the nervous system. The basis for this theory is the experimental demonstration that a nerve impulse assumes five different forms as it advances through the synaptic region, and that five basic mathematical operations have been identified as being involved in the transformation of one form into another form. As a result of these data, the synaptic region is regarded as a functional unit where information coming to it is unpacked, processed, stored, and retrieved for transit to another synaptic region or effector site. The data also suggests that a nerve impulse is a bolus of energy, therefore, without substance; that it contains information coded in its shape or form; that it is precisely described mathematically. Furthermore, the data suggests synaptic regions process these nerve impulses by applying mathematical operations to them; that function in the synaptic region is highly stereotyped (programmed); that chemical substances are associated with the mathematical operations. The basic approach of this theory is to regard a significant portion of the nervous system as an ‘interface’ between the external universe and man himself. As an interface, the nervous system receives and processes information from both the external universe and man himself in a programmed manner. The interface functions by converting the information it receives into a bolus of energy, the nerve impulse, then processes the bolus by converting it into numbers or functions and applying mathematical operation to it.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Acta biotheoretica 28 (1979), S. 283-302 
    ISSN: 1572-8358
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new theory of synaptic function in the nervous system (Dempsher, 1978) is applied to the simplest system for integration of function in the nervous system. This system includes a sensory and motor neuron and three ‘synaptic’ regions associated with those two neurons; a receptor region, an interneuronal spinal synaptic region linking the two neurons, and an effector region. Information is first received and processed at the receptor region. The processing consists of five components: 1. A highly selective mechanism which allows only that information to enter the receptor system which is appropriate. 2. The ‘appropriateness’ of the information is determined by the alphabet (miniature potentials) already in that area. 3. The information entering the system is assembled in a pattern meaningful for the next processing operation. 4. The assembled information is then ‘disassembled’ into its subunits and mapped into the alphabet (miniature potentials). 5. These miniature potentials are assembled into another pattern meaningful to fit the role of the receptor region. 6. This new pattern is repacked for transit to the central synaptic region. At the central synaptic region, essentially the same process takes place except here an additional operation takes place which determines its role in the processing system. The incoming information is disassembled into its subunits, mapped into the miniature potentials already there; these are collected together in a meaningful pattern, ‘operated’ on, then repacked for transit to the effector site, where again the same kind of processing sequence takes place. In all three regions, despite the difference in their roles, there are similar processing features: (1) In each region, three forms of the nerve impulse are involved: miniature graded potentials, graded potentials, action potentials. (2) In each region, each component of the process is carried out by a precise mathematical operation: four each in the receptor and effector regions; five in the central synaptic region. It is suggested that integration of function in the nervous system consists of converting information into energy which is in turn converted into a number. Processing of information at each region then involves mathematical operations applied to these numbers. Function appears to be stereotyped in all three regions. The receptor region receives highly selective and restrictive information so that the universe we ‘perceive’ would appear to be a subset of a much larger universe.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Acta biotheoretica 31 (1982), S. 185-202 
    ISSN: 1572-8358
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new theory for basic function in the nervous system has recently been proposed (Dempsher, J., 1979a, 1979b; 1980, 1981). The major basic themes of the new theory are as follows: (1) There are two fundamental units of structure and function, the fibre or conducting mechanism, and the neurocentre, where nervous system function as we know it takes place. (2) The nerve impulse is regarded as a mathematical event. The mathematics is the result of a prescribed fusion of energy and matter. (3) Nervous system function everywhere in the nervous system is mathematical. In the fibre, the prescribed fusion of energy and matter results in a number. In the neurocentre, the prescribed fusion of energy and matter results in a mathematical function. Basic function in the nervous system everywhere requires a transformation of a nerve impulse in the fibre into a nerve impulse in the neurocentre with opposing properties: The nerve impulse in the fibre is confined to the fibre; cannot sum with another nerve impulse; can travel long distances with constant form and velocity; curvature in space and time are not significant features; and it is regarded as a number. On the other hand, the nerve impulse in the neurocentre is confined to the neurocentre; can sum with other nerve impulses; cannot travel long distances - even in a very short distance, it changes form; curvature in space and time is a very significant feature; and it is regarded as a mathematical function. The approach to determine how one form of the nerve impulse is transformed into the other at the input region is based on two of the differences listed above: (1) The nerve impulse in the fibre cannot sum with another nerve impulse in the fibre, whereas in the neurocentre, several nerve impulses sum to form a larger nerve impulse. (2) The nerve impulse in the fibre is regarded as a number, in the neurocentre, it is regarded as a mathematical function. The commonality of (1) and (2) is that the properties defining the nerve impulse in the fibre are associated with the property ofdiscreteness, whereas, the properties defining the nerve impulse in the neurocentre are associated with the property ofcontinuousness. Thus, the basic theme of unification of function at the input region of the neurocentre is the transformation of a phenomenon with the property of discreteness into a phenomenon with the property of continuousness. The solution to this transformation is approached from two directions:biologic andmathematical. In the biologic approach, the unit element of the nerve impulse in the fibre terminations (as.u. as a wave of energy, a ‘spike’ in the classical theory) fuses with a. calcium-binding protein causing the release of Ca++. The calcium ions then combine with another protein. Associated with the second reaction is a conformational change in the Ca++-protein complex and the unit element in the neurocentre, bs.u., is emitted. Individual bs.u. then fuse with acetylcholine; summation occurs andwave b is emitted. In the mathematical approach, the nerve impulse as a number, is partitioned into two numbers with a precise rule relating these two numbers. One possibility suggested is that the number can be regarded as the value of a trigonometric function. This value then gives rise to an angle with sides related in a ratio or proportionality fashion — a relationship with the property of continuousness, as contrasted with that of a single number, discreteness. Both biologic and mathematical approaches are united so as to suggest that the mathematical (trigonometric) function arose as the result of a fusion of energy (as.u. as a wave of energy) and the calcium-binding protein as matter; following this reaction, bs.u., with opposing properties, is emitted.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Acta biotheoretica 29 (1980), S. 119-127 
    ISSN: 1572-8358
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The purpose of this paper is to present a bio-physical basis of mathematics. The essence of the theory is that function in the nervous system is mathematical. The mathematics arises as a result of the interaction of energy (a wave with a precise curvature in space and time) and matter (a molecular or ionic structure with a precise form in space and time). In this interaction, both energy and matter play an active role. That is, the interaction results in a change in form of both energy and matter. There are at least six mathematical operations in a simple synaptic region. It is believed the form of both energy and matter are specific, and their interaction is specific, that is, function in most of the nervous system is stereotyped. It is suggested that mathematics be taken out of the ‘mind’ and placed where it belongs — in nature and the synaptic regions of the nervous system; it results in both places from a precise interaction between energy (in a precise form) and matter (in a precise structure).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Acta biotheoretica 30 (1981), S. 121-137 
    ISSN: 1572-8358
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Classical Theory of function in the nervous system postulates that the nerve impulse is the result of a sequential reversal of the membrane potential due to an increased permeability of the membrane, first to sodium ions, then to potassium ions. The new theory presents a bio-physical model which depicts the nerve impulse as an event involving the motions of electrons and waves, and their interactions with sodium and potassium atoms and ions. The velocity of the nerve impulse (the most important parameter of nerve function) is determined by the product of two constants: c = the speed of light, which is a constant for all nerves; k =a constant for each nerve and is believed to be a specific property of nerve matter related in some way to the atomic process. The theory proposes that the nerve impulse in the axon is ‘dualistic’ in nature (particles and waves play equally significant roles). The dualistic nature accounts for the three most fundamental characteristics of conduction of the nerve impulse: periodicity (conduction of a nerve impulse over long distances with constant velocity and form); non-summing (two nerve impulses cannot be in the same place at the same time); ‘quantum nature’ of each nerve impulse — i.e., the unit message of the nerve impulse is an indivisible unit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 102 (1948), S. 195-204 
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...