Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ [u.a.] : Wiley-Blackwell
    Journal of Orthopaedic Research 6 (1988), S. 317-323 
    ISSN: 0736-0266
    Keywords: Bone ; Mechanical properties ; Diabetes ; Streptozocin ; Mineralization ; Life and Medical Sciences
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The long-term effects of experimentally induced diabetes on bone were studied in eight male Lewis rats, intravenously (i.v.) injected with 65 mg/kg of streptozocin (STZ) and maintained for 12 months. Eight untreated age-matched rats served as controls. In the STZ-treated rats, experimentally induced diabetes was documented by the presence of hyperglycemia at 24 h and at 3 and 12 months. Significantly less weight was gained and less growth occurred in the STZ-treated rats despite careful attention to feeding and hydration. Mineral alterations were detected in the bones of the animals with experimental diabetes. Decreased hydroxyapatite crystal perfection, decreased Ca/P of the ash, and decreased ash content in the tibial metaphyses with increased ash content in the tibial diaphyses, was noted relative to controls. Bone osteocalcin content was increased in the metaphyses of the STZ-treated rats. While absolute measures of stiffness, torsional strength and energy absorption were decreased in the bones of the STZ-treated animals, when torsional strength and stiffness were normalized for differences in both growth and geometry, the normalized stiffness values for the diabetic bones were increased. The results suggest that in experimental diabetes certain aspects of bone mineralization are adversely affected and lead to reduced strength-related properties. However, a compensatory increase in stiffness occurs. The reason for this increase, although not known, may be related to changes in bone crystal structure.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ [u.a.] : Wiley-Blackwell
    Journal of Orthopaedic Research 7 (1989), S. 792-805 
    ISSN: 0736-0266
    Keywords: Neutral proteases ; Proteoglycans ; Fracture healing ; Alkaline phosphatase ; Matrix vesicles ; Life and Medical Sciences
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The process of endochondral fracture healing is biochemically similar to growth plate calcification. Recent studies have identified potentially important roles for proteoglycan-degrading enzymes in the growth plate. The purpose of the study described herein was to identify, in healing fractures, neutral enzyme activities capable of degrading proteoglycans and other matrix proteins. Two sets of 60 male Sprague-Dawley rats underwent the production of closed femoral fractures. Calluses were retrieved at timed intervals, and cell and matrix vesicle fractions were prepared for electron microscopy, neutral peptidase, and alkaline phosphatase assays. In another group of 10 animals, fractions were prepared from 14-day calluses and examined for proteoglycanase activity. In the cell fractions, alkaline phosphatase, alanyl-β-naphthylamidase, aminopeptidase, and endopeptidase activities showed somewhat parallel distributions peaking at ∼14-17 days. In the matrix vesicle fractions, similar relative distributions were observed for alkaline phosphatase and endopeptidase. However, here the peak activities occurred up to 3 days later than they did in the cell fractions. Significant proteoglycanase activity was confirmed in both cell and matrix vesicle fractions. These findings are consistent with the hypotheses that (a) neutral peptidases, by virtue of their temporal expression in parallel with alkaline phosphatase, may be involved in preparing fracture callus matrix for calcification; and (b) matrix vesicles may convey certain of these enzymes to sites of both matrix degradation and calcification, since the same activities found in cells are found in matrix vesicles a few days later. The possibility that some of these enzymes are involved in growth factor activation remains to be investigated.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...