Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Exposure of neurones in culture to excitotoxic levels of glutamate results in an initial transient spike in [Ca2+]i followed by a delayed, irreversible [Ca2+]i rise governed by rapid kinetics, with Ca2+ originating from the extracellular medium. The molecular mechanism responsible for the secondary Ca2+ rise is unknown. Here, we report that the delayed Ca2+ entry in cortical neurones is diminished by 2-aminoethoxydiphenyl borate (2-APB: IC50 = 62 ± 9 µm) and La3+ (IC50 = 7.2 ± 3 µm), both known to inhibit transient receptor potential (TRP) and store-operated Ca2+ (SOC) channels. Application of thapsigargin, however, failed to exacerbate the delayed Ca2+ deregulation, arguing against a store depletion event as the stimulus for induction of the secondary [Ca2+]i rise. In addition, these neurones did not exhibit SOC entry. Unexpectedly, application of ryanodine or caffeine significantly inhibited glutamate-induced delayed Ca2+ deregulation. In basal Ca2+ entry experiments, La3+ and 2-APB modulated the rapid rise in [Ca2+]i caused by exposure of neurones to Ca2+ after pre-incubating in a calcium-free medium. This basal Ca2+ influx was mitigated by extracellular Mg2+ but not aggravated by thapsigargin, ryanodine or caffeine. These results indicate that 2-APB and La3+ influence non-store-operated Ca2+ influx in cortical neurones and that this route of Ca2+ entry is involved in glutamate-induced delayed Ca2+ deregulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...