Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Urological research 22 (1994), S. 209-212 
    ISSN: 1434-0879
    Keywords: Extracorporeal shockwave lithotripsy ; Magnetic resonance imaging ; Stone hardness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Accurate prediction of the response of an individual patient to lithotripsy remains impossible. Certain factors such as the chemical composition, size, and position of the calculus are known to be important in determining the success rate. This paper reports the use of magnetic resonance imaging (MRI) to evaluate 141 urinary calculi in vitro. A wide range of signals for each chemical type of calculus was found on each of the three imaging sequences used (T1-weighted, T2-weighted, and proton density). None of the chemical groups examined showed a typical MRI profile allowing it to be distinguished from the other groups. Analysis of variance showed a statistical difference between signals for apatite and struvite on the T1-weighted sequence, and between struvite and uric acid on the proton density sequence (both, P〈0.05). These results show for the first time that MRI is capable of distinguishing between different chemical types of stones. This is particularly important for the comparison of struvite and apatite which appear to be similar in conventional investigations but have quite different hardness values. Further work is in progress correlating the results of this study with stone microhardness and extracorporeal shockwave lithotripsy fragility tests to determine whether MRI accurately predicts the success of lithotripsy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...