Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 36 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The fim switch of Escherichia coli is responsible for phase-variable expression of type 1 fimbriae. Switching in the ON-to-OFF and OFF-to-ON directions is promoted by the FimB recombinase, while the FimE recombinase directs switching predominantly in the ON-to-OFF direction. The effects of local promoter activity and the H-NS nucleoid-associated protein on inversion of the switch were assessed. In contrast to FimB-mediated inversion, inversion of the switch by the FimE recombinase was unaffected by the H-NS status of the cell. Transcription towards the switch from within a translationally inactivated fimE gene was found to bias the switch strongly in the OFF direction, creating a FimE+-like phenotype in the absence of the FimE protein. This biasing was H-NS dependent and was also contingent on transcription from within the switch. These data show that local transcription and a nucleoid-associated protein both contribute to the modulation of a site-specific recombination event on the bacterial chromosome.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The antigen 43 surface protein of Escherichia coli is expressed in a phase-variable manner by a mechanism involving alternative activation and repression of transcription of the agn43 gene. The repressor is the OxyR DNA-binding protein, and its binding site was found to be located downstream of the agn43 transcription start site in a region of DNA that encompasses three 5′-GATC-3′ sequences that are subject to Dam-mediated DNA methylation. It has been suggested previously that the phase-variable expression of antigen 43 results from a competition between Dam methylase and the OxyR repressor for these sites. The 5′-GATC-3′ sequences were inactivated for methylation by site-directed mutagenesis, and all possible combinations of inactive and active sites were assessed for effects on phase-variable expression of the agn43 gene. Inactivation of any 5′-GATC-3′ site individually had no effect; at least two sites had to be inactivated to disrupt the normal pattern of expression. Studies of OxyR interaction with agn43 DNA showed that methylation of any two 5′-GATC-3′ sites was necessary and sufficient to block binding of the repressor. It was also found that the adenines of the second and third 5′-GATC-3′ sites are required for OxyR binding, demonstrating that the sites for Dam methylation and for repressor binding are intimately associated. This is consistent with a competition model in which Dam and OxyR share a preference for specific DNA sequences in the regulatory region of the agn43 gene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Truncated derivatives of the Escherichia coli nucleoid-associated protein H-NS that lack the DNA-binding domain remain competent for silencing of the cryptic bgl operon in vivo. Previous studies have provided evidence for the involvement of either the homologous nucleoid protein StpA or the alternative sigma factor RpoS in this unusual silencing mechanism. Here, we rationalize this apparent discrepancy. We show that two hns alleles (hns-205::Tn10 and hns60), which produce virtually identical amino-terminal fragments of H-NS, have very different requirements for StpA to mediate bgl silencing. The hns60 allele produces a high level of truncated H-NS, which can overcome the absence of StpA, whereas the lower level expressed by hns-205::Tn10 requires StpA for silencing. Reversing the relative levels of the two H-NS fragments reverses their requirement for StpA to silence bgl transcription. This suggests that the amino-terminal fragment of H-NS can be targeted to DNA to mediate silencing by multiple protein–protein interactions. The high-specificity interaction with StpA can function at low levels of truncated H-NS, whereas an alternative mechanism, perhaps involving lower specificity interactions with another protein(s), is only functional when truncated H-NS is abundant. These findings have important implications for the involvement of other proteins in H-NS-dependent transcriptional repression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 38 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: When a wild-type strain of Escherichia coli and its stpA, hns and stpA hns mutant derivatives were compared by two-dimensional protein gel electrophoresis, the levels of expression of several proteins were found to vary. One of these was identified as the outer membrane porin protein, OmpF. In the stpA hns double mutant, the level of OmpF was downregulated dramatically, whereas in hns or stpA single mutants, it was affected only slightly. Transcription from the ompF promoter was reduced by 64% in the double mutant; however, the level of ompF mRNA was reduced by 96%. This post-transcriptional expression was found to result from a strong reduction in the half-life of ompF message in the double mutant. The micF antisense RNA was shown to be involved in OmpF regulation by StpA using a strain deleted for micF. Moreover, micF antisense RNA accumulated considerably in an stpA hns background. Transcriptional data from a micF–lacZ fusion and measurements of micF RNA half-life confirmed that this was caused by transcriptional derepression of micF as a result of the hns lesion and increased micF RNA stability due to the absence of StpA (a known RNA chaperone). These data suggest a novel facet to the regulation of OmpF expression, namely destabilization of micF RNA by StpA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Molecular microbiology 45 (2002), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The fim switch is a 314 bp segment of invertible chromosomal DNA that is responsible for phase-variable expression of type 1 fimbriae in Escherichia coli. The switch harbours the promoter of the fimA gene. This codes for the type 1 fimbrial subunit protein and, when the promoter is directed towards fimA (phase ON), the bacteria are fimbriate and, when it is directed away, the cells are afimbriate. The switch lies immediately downstream from the fimE gene, coding for a tyrosine site-specific recombinase that catalyses inversion of the switch from the ON to the OFF phase. It has been suggested previously that, because the fim switch lies immediately downstream from the fimE gene, expression of FimE could be subject to control by antisense RNA in phase OFF bacteria in which the promoter harboured within the fim switch is oriented against the direction of transcription of the fimE gene. In this study, no effect of inducible fimE antisense RNA, expressed in cis or in trans, on FimE expression was detected. In phase ON cells, fimE mRNA extends across the switch into fimA, whereas in phase OFF cells, it terminates within the switch. This termination is Rho dependent and is abolished in a rho mutant. The extended fimE found in phase ON cells is more stable and results in an approximately fivefold increase in FimE protein compared with phase OFF bacteria. In the absence of Rho factor, fimE mRNA is equally stable in phase ON and phase OFF cells, and the levels of FimE recombinase are also equal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Salmonella plasmid virulence (spv ) genes of Salmonella typhimurium are activated at the level of transcription as the bacteria enter stationary phase in vitro or in response to signals received during intracellular growth. Activation requires the LysR-like transcription factor SpvR and the alternative sigma factor RpoS. In this report, we show by biochemical and genetic analyses that two chromosomally encoded DNA-binding proteins contribute to the control of spv expression. These are the integration host factor (IHF), which binds to DNA sequences upstream of the spvR regulatory gene, and the leucine-responsive regulatory protein (Lrp), which binds to sequences upstream of the spvABCD operon. Under all conditions tested, inactivation of IHF expression reduces the level of spvR transcription by twofold. It also alters the response of the spv regulon to loss of DNA gyrase activity, consistent with a role for IHF in organizing DNA structure in the vicinity of the spvR promoter. Lrp represses spvA gene expression by up to fivefold and Lrp-mediated repression is antagonized by leucine. The Lrp binding site upstream of the spvA gene overlaps one of the binding sites for the positive regulator SpvR, suggesting a mechanism by which Lrp repression is exerted. This is a first demonstration of a role for Lrp in controlling genes that are also subject to intracellular regulation. These data show that the spv virulence genes belong simultaneously to several regulons in the cell, raising the possibility that spv expression can be fine-tuned in response to multiple environmental inputs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The interaction of the Salmonella typhimurium virulence gene regulator, SpvR, with its operator sites upstream of the spvA and spvR genes was analysed in vivo by dimethyl sulphate (DMS) footprinting and site-directed mutagenesis. DMS methylation protection assays showed that, in vivo, SpvR forms direct protein–DNA contacts with nucleotides clustered in two regions (+1 to −27 and −51 to −71) of the spvA regulatory region. These regions were subjected to site-directed mutagenesis and the effects on SpvR binding and gene activation assessed. Mutations that prevented occupancy of the promoter distal site (−51 to −71) in vivo also prevented occupancy of the promoter proximal site (+1 to −27), whereas mutations in the proximal site affected binding only at the proximal site and not the distal site. SpvR binding at the promoter proximal site was an essential prerequisite for transcription activation. These findings demonstrated a hierarchy of SpvR binding in which the promoter distal site is dominant to the proximal. The spvR gene was found to possess an operator site that resembled closely the distal SpvR binding site of the spvA operator. Nonetheless, SpvR interaction with the spvR operator was difficult to detect in vivo. When the nucleotide sequence of the spvR operator was altered at two nucleotides so that it corresponded more precisely to that of the distal site of the spvA operator, strong SpvR–DNA interactions were detected, with nucleotides in the region −31 to −67 being protected from DMS methylation in vivo. However, despite the improved interaction with the transcriptional activator, the altered regulatory region was poorer at promoting spvR gene transcription than the wild type. We describe a two-step model for activation of the spvA promoter and discuss the possibility that a specific cofactor in addition to sigma factor RpoS is required for SpvR action at this promoter in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 21 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Transcription of fimA, the Escherichia coli gene encoding the type 1 fimbrial subunit protein, is driven by a promoter carried on a 314bp segment of invertible DNA. We have discovered that overexpression of fimB, one of the genes required for inversion of this DNA element, results in transcriptional repression of fimA. Furthermore, under these conditions inversion ceases to be dependent on the integration host factor (IHF) or the leucine-responsive regulatory protein (LRP), cofactors hitherto considered to be essential for inversion. Inversion will even occur (albeit at a very low level) in the absence of both cofactors. The interaction of the fimB gene product with the invertible element was studied in vivo in the presence of single- and multicopy fimB genes. Dimethyl sulphoxide (DMS)-mediated methylation of DNA at the 9 bp inverted repeats, which flank the invertible element, was found to vary in the presence and absence of functional fimB. The DMS reactivity profile at the left-hand inverted repeat was similar with single or multicopy fimB. The corresponding profile at the right-hand inverted repeat varied with fimB copy number. As this repeat lies between the fimA promoter and open reading frame, FimB binding here is likely to modulate fimA transcription and vice versa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd, UK
    Molecular microbiology 29 (1998), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Shigella flexneri is the causative agent of bacillary dysentery and is a facultative intracellular pathogen. Its virulence regulon is subject to tight control by several mechanisms involving the products of over 20 genes and an array of environmental signals. The regulon is carried on a plasmid that is prone to instability and to integration into the chromosome, with associated silencing of the virulence genes. Closely related regulons are found in other species of Shigella and in enteroinvasive Escherichia coli. A wealth of detailed information is now available on the Shigella virulence gene control circuits, and it is becoming clear that these share many features with regulatory systems found in other bacterial pathogens. All of this makes the S. flexneri virulence gene control system a very attractive topic for those interested in the nature of gene regulatory networks in bacteria.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Bacterial cells possess a subset of genes whose expression correlates with changes in DNA supercoiling brought about by anaerobic growth and by growth at high osmolarity. It has been shown previously that expression of the histidine biosynthetic operon of Salmonella typhimurium is derepressed by relaxation of supercoiled DNA. Here, we confirm that a his:: MudJ operon fusion in S. typhimurium can be induced by treatment with the DNA gyrase inhibitor novobiocin in a dose-dependent manner, and show that the level of derepression is higher in stationary phase than in mid-exponential phase cultures. Furthermore, expression of his is repressed by anaerobiosis and by osmolarity, two environmental parameters which increase the negative supercoiling of bacterial DNA. Novobiocin induction of his is also repressed by growing the cells either at high osmolarity or anaerobically. Both environmental repression and novobiocin induction of his require the his attenuator. In addition, derepression of his expression by novobiocin and its repression by anaerobiosis or osmolarity are independent of the stringent response gene, relA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...