Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Malden, USA : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effect of iron and iron/yttrium codoping on the densification and grain growth of ultra high-purity (99.995%) fine-grained alumina has been studied. The experiments were carried out under both oxidizing (flowing air) and reducing conditions (N2/H2 mixture, pO2∼5.1 × 10−14). For studies carried out in air, relative to undoped alumina, the addition of 1000 ppm Fe was found to reduce the densification rate by a factor of 5 and also retard the grain growth rate. This result, which was consistent with tensile creep data obtained in a separate study, was attributed to the retardation of grain-boundary diffusive processes by segregating Fe(III) ions. In contrast, under reducing conditions the 1000 ppm Fe- doped samples exhibited an increase in the densification rate of 2.5 orders of magnitude over that of the undoped samples. In the case of the codoped compositions (1000 ppm Fe/1000 ppm Y), for heat treatment in air, the densification behavior did not differ significantly from that of samples singly doped with Y (1000 ppm). However, under reducing conditions, the presence of the Fe2+ in the samples appeared to compensate for the retarding effect of the yttrium, such that the densification rate of the codoped samples was comparable with that of the undoped material. A mechanism based on compensating point defects is invoked to rationalize the more rapid kinetics under reducing conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...