Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experiments in fluids 22 (1997), S. 348-350 
    ISSN: 1432-1114
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  At low values of the momentum thickness Reynolds number, R θ, a relatively accurate estimate of the friction velocity U r can be obtained by assuming a power law velocity distribution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Flow, turbulence and combustion 63 (2000), S. 247-267 
    ISSN: 1573-1987
    Keywords: spectral models ; large-eddy simulations ; isotropic turbulence ; channel ; cavity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract We first recall the EDQNM two-point closure approach of three-dimensional isotropic turbulence. It allows in particular prediction of the infrared kinetic-energy dynamics (with ak 4 backscatter) and the associated time-decay law of kinetic-energy, useful in particular for one-point closure modelling. Afterwards, we show how the spectral eddy viscosity concept may be used for large-eddy simulations: we introduce the plateau-peak model and the spectral-dynamic models. They are applied to decaying isotropic turbulence, and allow recovery of the EDQNM infrared energy dynamics. Anew infrared k 2 law for the pressure spectrum, predicted by the closure, is also well verified. Assuming that subgrid scales are not too far from isotropy, the spectral-dynamic model is applied to the channel flow at h += 390, with statistics in very good agreement with DNS, while reducing considerably the computational time. We study with the aid of DNS and LES the case of the channel rotating about an axis of spanwise direction. The calculations allow to recover the universal linear behaviour of the mean velocity profile, with a local Rossby number equal to −1. We present also LES (using the Grenoble Filtered Structure-Function Model), of a turbulent boundary layer passing over a cavity. Finally, we make some remarks on the future of LES for industrial applications.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...