Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 57 (2000), S. 1360-1372 
    ISSN: 1420-9071
    Keywords: Key words. Plasma membrane fatty-acid-binding protein (FABPpm); fatty acid translocase (FAT); fatty acid transporter protein (FATP); free fatty acid (FFA); fatty acid uptake; long-chain polyunsaturated fatty acids (LCPUFAs); long-chain fatty acids (LCFAs).
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The critical importance of long-chain fatty acids in cellular homeostasis demands an efficient uptake system for these fatty acids and their metabolism in tissues. Increasing evidence suggests that the plasma-membrane-associated and cytoplasmic fatty-acid-binding proteins are involved in cellular fatty acid uptake, transport and metabolism in tissues. These binding proteins may also function in the fine tuning of cellular events by modulating the metabolism of long-chain fatty acids implicated in the regulation of cell growth and various cellular functions. Several membrane-associated fatty-acid-binding/transport proteins such as plasma membrane fatty-acid-binding protein (FABPpm, 43 kDa), fatty acid translocase (FAT, 88 kDa) and fatty acid transporter protein (FATP, 63kDa) have been identified. In the feto-placental unit, preferential transport of maternal plasma arachidonic and docosahexaenoic acids across the placenta is of critical importance for fetal growth and development. Our studies have shown that arachidonic and docosahexaenoic acids are preferentially taken up by placental trophoblasts for fetal transport. The existence of a fatty-acid-transport system comprising multiple membrane-binding proteins (FAT, FATP and FABPpm) in human placenta may be essential to facilitate the preferential transport of maternal plasma fatty acids in order to meet the requirements of the growing fetus. The preferential uptake of arachidonic and docosahexaenoic acids by the human placenta has the net effect of shunting these maternal plasma fatty acids towards the fetus. The roles of plasma membrane-associated binding/transport proteins (FABPpm, FAT and FATP) in tissue-specific fatty acid uptake and metabolism are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4919
    Keywords: rat liver ; fatty acid-binding proteins ; linoleic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Summary We have studied the effects of Efamol evening primrose oil (EPO) on fatty acid-binding proteins (L-FABP) of rat liver. EPO contains 72% cis-linoleic acid and 9% cis-gamma linolenic acid. EPO has been clinically used for treatment of a number of diseases in humans and animals. EPO is also known to lower cholesterol level in humans and animals. Feeding of an EPO supplemented diet to rats (n = 9) for 2 months decreases the oleate binding capacity of purified L-FABP of rat liver whereas the palmitate binding activity was increased by 38%. However, EPO feeding did not alter the L-FABP concentrations significantly as measured by using the fluorescence fatty acid probe, dansylamino undecanoic acid. Endogenous fatty acid analysis of L-FABPs revealed significant qualititative and quantitative changes in fatty acid pattern after EPO feeding. EPO feeding decreased the endogenous palmitate level by 53% and oleate level by 64% in L-FABPs and also EPO feeding decreased the total endogenous fatty acid content from 62 nanomole per mg of protein to 42 nanomole per mg of L-FABP (n = 3).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...