Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 21 (1929), S. 1138-1145 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 1 (1989), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In the central nervous system of fish and frogs, some, but not all, axons can regenerate. Retinal ganglion cells are among those that can. The retinae of fish and frogs produce new retinal neurons, including ganglion cells, for months or years after hatching. We have evaluated the hypothesis that retinal axonal regeneration is obligatorily linked to continued production of new ganglion cells.We used bromodeoxyuridine immunocytochemistry to assess retinal neurogenesis in juvenile, yearling, and 10 year old Xenopus laevis. Retinal ganglion cell genesis was vigorous in the marginal retina of the juveniles, but in the yearlings and the 10 year olds, no new ganglion cells were produced there. Cellular proliferation in the central retina was evident at all three ages, but none of the cells produced centrally were in the ganglion cell layer.Regeneration was examined in vivo by cutting one optic nerve and then, weeks later, injecting the eye with tritiated proline. Autoradiographs of brain sections showed that the optic nerves of all three ages regenerated. Regeneration in vitro was assessed using retinal explants from frogs of all three ages. In all cases, the cultures produced neurites, with some age-specific differences in the patterns of outgrowth.We conclude that retinal axonal regeneration is not linked obligatorily to maintained neurogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 31 (1978), S. 155-162 
    ISSN: 1432-1106
    Keywords: Goldfish ; Retinotectal reorganization ; Competitive innervation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary It has been previously suggested that the retinotectal projection can reorganize independently along two orthogonal tectal axes. This possibility was reexamined by removing roughly a quarter of the retina and slightly less than a quarter of the tectum. In the tectal case, the unseated fibers arborized rostral to the ablation, but not lateral to it, and the projection shifted irrespective of tectal axes to maintain topographic order and a roughly uniform representation of retinal areas. In the retinal case, expansion into the denervated quadrant was only from the rostral, never from the medial or lateral directions. Analysis of the movements of fiber arbors shows that they respond to local competition for tectal space rather than following tectal axes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...