Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 27 (1982), S. 3027-3041 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Graft copolymerization of acrylonitrile onto bagasse and wood pulps has been studied using ceric ammonium nitrate as initiator. The effect of order of reactants addition on grafting was examined: three methods were studied. Addition of the pulp to a mixture of initiator and monomer (method A) resulted in more efficient grafting than the other two methods. The reaction produced more grafting at 50°C than at 30°C or at 40°C. The results showed that the monomer and initiator concentrations are the major factors influencing the grafting rate of acrylonitrile. Increasing the acrylonitrile or initiator concentration was accompanied by a substantial increase in graft yields. Increasing the initiator concentration is more effective on polymerization rate than the increase in monomer concentration. The extent of grafting of this monomer can best be controlled by reaction time. Water swelling of pulps significantly affected the grafting rate of acrylonitrile as well as the ceric consumption during grafting. The reactivity of bagasse pulp towards grafting of acrylonitrile is higher than that of wood pulp due to a more open structure of cellulose in bagasse pulp as well as the presence of some lignin which accelerates grafting. Ceric consumption during grafting depends on the nature of the pulp as well as the monomer and initiator concentrations, time, temperature, and the method of grafting. More Ce(IV) is consumed during grafting than during oxidation of the pulps under identical reaction conditions, due to homopolymer formation which accompanied grafting. The ceric consumption by bagasse during grafting or oxidation is somewhat greater than that consumed by wood pulp under similar reaction conditions.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 27 (1982), S. 2833-2844 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Activation of pulps during acetylation, by prior mechanical or chemical treatment, has been investigated. The effect of degree of beating on the acetylation rate of wood and bagasse pulps has been studied. It is found that the acetylation rate of pulps increases when the degree of beating of pulps is increased to a definite degree, after which it slows down. The maximum reactivity of bagasse pulp is obtained at 50°SR, while that of wood pulp is observed at 30°SR. The effect of grafting of acrylonitrile onto bagasse and wood pulps on their reactivity during acetylation has been also studied. The results indicate that grafting of acrylonitrile onto pulps has a favorable effect on their acetylation rate. This is dependent on the degree of grafting as well as the origin of pulp fibers. The most suitable method of activation during acetylation reaction is dependent on the origin of the pulp. The reactivity of bagasse pulp during acetylation is influenced more by beating of pulp, prior to the reaction, than by the grafting of acrylonitrile onto pulp. On the other hand, the acetylation reaction of wood pulp is activated by grafting rather than by beating. Also the effect of the activation process, mechanical or chemical, on the strength properties of the paper sheets produced from acetylated pulps has been investigated. Chemical activation of wood pulp prior to acetylation resulted in pulp with slightly higher strength properties than that activated by mechanical means. But, in the case of bagasse pulp, mechanical activation resulted in a pulp with strength superior to that produced by chemical activation.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 29 (1984), S. 4329-4333 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Cyanoethylated of wood pulp was carried out at different conditions including acrylonitrile concentration, time, and temperature of the reaction. Some mechanical properties of paper sheets prepared from the cyanoethylated wood pulp were examined. Cyanoethylated paper sheets acquired higher breaking length, fold number, and burst factor than the untreated paper sheets irrespective of the conditions used for cyanoethylation. On the other hand, the tear factor of cyanoethylated paper sheets was generally lower than that of the untreated control through under certain conditions cyanoethylation brought about substantial improvement in tear factor. The water retention value and beating time are decreased depending upon the condition of cyanoethylation used.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 30 (1985), S. 2171-2178 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The ability of ceric ammonium nitrate to induce graft copolymerization of acrylonitrile onto hemicellulose was investigated. The graft yield depends on monomer and initiator concentrations as well as reaction time and temperature. Chemical analysis of the reaction product of hemicellulose and acrylonitrile in the presence of ceric ammonium nitrate revealed that the ceric ammonium nitrate acted as initiator for polymerization of acrylonitrile and as oxidizing agent for hemicellulose. Proof for grafting of hemicellulose was provided through IR analysis.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 30 (1985), S. 4793-4799 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Thermal degradation of carboxymethylcellulose, cellulose acetate, grafted wood pulp, and viscose rayon have been studied using thermogravimetric analysis and differential thermal analysis. The values of rate constant K and the activation energy E were calculated from the kinetic of weight loss using the theory of the first-order reaction. The activation energy of grafted cellulose and viscose rayon was 〉 cellulose acetate 〉 carboxymethylcellulose.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 23 (1985), S. 1569-1577 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Thermal gravimetric analysis, and differential thermal behavior of holo- and hemicelluloses obtained from rice straw and bagasse were investigated. Degradation was found to be of first order reaction. The activation energy values and the rate constants were calculated from the kinetic of weight loss. Hemicellulose was found to be less stable than holocellulose, and the stability of the samples was arranged in the order, rice straw holo- 〉 bagasse holo- 〉 rice straw hemi- 〉 bagasse hemicellulose. Degradation of rice straw (holo- as well as hemicellulose) was performed via two exothermic processes, whereas bagasse hemicellulose combustion was completed through three exothermic processes. The magnitude and the shape of the exotherms depend, mainly, on the chemical composition of the sample.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...