Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Inflammation and demyelination both contribute to the neurological deficits characteristic of multiple sclerosis. Neurological dysfunctions are attributable to inflammatory demyelination and, in addition, to soluble factors such as nitric oxide, cytokines and antibodies. QYNAD, an endogenous pentapeptide identified in the cerebrospinal fluid of patients with demyelinating disorders, has been proposed to promote axonal dysfunction by blocking sodium channels. The present study aimed at characterizing the properties of QYNAD in acutely isolated thalamic neurons in vitro. QYNAD, but not a scrambled peptide (NYDQA), blocked sodium channels in neurons by shifting the steady-state inactivation to more negative potentials. Blocking properties followed a dose–response curve with a maximum effect at 10 µm. A fluorescently labelled QYNAD analogue with retained biological activity specifically stained thalamic neurons, positive for type II sodium channels, thus demonstrating the specificity of QYNAD binding. Our study confirms and extends previous observations describing QYNAD as a potent sodium channel-blocking agent. These data as well as our preliminary observations in in vivo experiments in an animal model of inflammatory CNS demyelination warrant further in vivo studies in order to clarify the exact pathogenetic role of QYNAD in inflammatory neurological diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...