Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 279 (1979), S. 80-81 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In this study, RNA was extracted from whole cells and analysed by polyacrylamide gel electrophoresis. Figure 1 shows an example of the routine assay used. Recovery variations were corrected by the 14C-labelled RNA bands, as the cells had been incubated with 14C-uridine for l d before the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 141 (1989), S. 1-7 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In mouse L cells, relatively low doses of UV light (e.g., about 35 J/m2) induced the rapid breakdown of the molecules of many RNA species transcribed shortly before irradiation. This included 28S, 18S, 5.8S, and 5S rRNA, U1, U2, U3, U4, and U5 small nuclear RNA, but not the main band of transfer RNAs or 7SL RNA. At higher UV doses, an RNA band that contains tRNAleu was also degraded rapidly after UV irradiation. RNA molecules synthesized long before irradiation (e.g., 22 h for small RNAs, 4 h for large rRNAs) were not affected. Our results suggest that the maturation and/or assembly into fully mature ribonucleoprotein particles of several small RNA species is not completed 4 h after transcription. The effect of UV radiation occurred in mouse L cells, but not in human HeLa or KB cells. In a previous report, L cells were transformed by DNA transfection with two mouse U1b RNA genes, named U1.1 and U1.2. We observed now that, in L cells transformed with the U1.2 gene, the ratio of radioactivity in the apparent U1b and U1a RNA precursors after 5 min of labeling was about 20 times higher than (a) this ratio in briefly labeled L cells that had been transformed with the U1.1 gene, and (b) the ratio of radioactive mature U1b and U1a RNA after 20 h of chase in L cells transformed with the U1.2 gene. These results suggest that very high levels of U1b RNA are transcribed from the exogenous U1.2 gene copies, followed by the rapid degradation of most of these transcripts.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 138 (1989), S. 433-438 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: There are gaps in what is known about the metabolism of some mammalian small RNA species. Our present observations can be summarized as follows. The level of radiolabeled mature U1 RNA doubled between 2 and 24 hr of label chase, while that of all other small RNA species tested did not change. These results are compatible with the possibility that the nucleotide precursor pool for U1 RNA transcription may be partly segregated, or that there may be a second pathway of U1 RNA formation. Precursors of nucleolar U3 RNA were detected whose electrophoretic mobilities are equivalent to those of transcripts ∼ 14 and ∼ 8 nucleotides longer than the mature species, and which are apparently cytoplasmic. The ladder of U2 RNA precursors showed a gap, suggesting that some of the cleavages during U2 RNA processing are endonucleolytic. We detected an apparent U5 RNA precursor whose electrophoretic mobility is equivalent to that of a species ∼ 1 nucleotide longer than mature U5 RNA. There was a predominant band in the middle of the ladder of U4 RNA precursors (apparently ∼ 3 nucleotides longer than mature U4 RNA) which suggests that U4 RNA maturation may pause briefly at that intermediate. There are apparently two additional species of mature hY3 RNA, which are less abundant and are about 1 and 2 bases longer than the major hY3 RNA species. An apparent hY3 RNA precursor was detected, which may be ∼ 2-3 nucleotides longer than the main mature hY3 RNA species.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 138 (1989), S. 586-592 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Two apparently distinct types of inhibition of the synthesis of U1, U2, U3, U4, and U5 small nuclear RNA, induced by ultraviolet (UV) radiation, have been described before: immediate and delayed. Our present observations can be summarized as follows: a) neither the immediate nor the delayed inhibition appear to be mediated by the formation of cyclobutane pyrimidine dimers, since they were not prevented by photoreactivating light, in ICR 2A frog cells; b) the inhibition of U1 RNA synthesis, monitored in HeLa cells within the first few minutes after irradiation, extrapolated to a substantial suppression at time zero of postirradiation cell incubation, providing further support for the proposal that the immediate inhibition is a reaction separate from the delayed UV light-induced inhibition of U1 RNA synthesis; c) the transition from the pattern of the immediate inhibition to that of the delayed inhibition (disappearance of the UV-resistant fraction of U1 RNA synthesis and increased rate of inhibition) occurred gradually, without an apparent threshold, within the first 2 hr of incubation after irradiation; and d) the incident UV dose that resulted in a 37% level of residual U1 RNA synthesis (D37) during the delayed inhibition was about 7 J/m2, with an apparent UV dose threshold, and was about 60 J/m2 for the immediate inhibition.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 117 (1983), S. 169-174 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We have examined some aspects of the biosynthesis of human small nuclear RNAs (snRNAs). The sensitivity of U5 and U4 snRNA synthesis to α-amanitin in whole cells suggests that RNA polymerase II is involved in the synthesis of these RNA species, in addition to that of U1, U2, and U3 snRNA. Two RNA bands were detected, whose properties are compatible with being U3 and U4 RNA precursors. The cytoplasmic U1 RNA precursor (pU1) was retained by an anti-RNP antibody column, while the cytoplasmic precursors to U1 and U2 (pU2) RNA were immunoprecipitated by monoclonal anti-Sm antibodies. Therefore, soon after their transcription, these cytoplasmic RNA precursors assemble with the polypeptides which bear the RNP (pU1) and Sm (pU1 and pU2) antigenic determinants. It has been shown before that, shortly after protein synthesis is interrupted, the apparent cytoplasmic→nuclear transition of newly made U2 RNA is inhibited, while U2 RNA transcription is not. The present data indicate that the trimming of the U2 RNA precursor to mature U2 RNA is not affected early after suppression of protein synthesis.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 114 (1983), S. 1-6 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The possibility that small nuclear RNA species U1 might be involved in the inhibition of protein synthesis that occurs during mitosis has been explored. Upon exposure of mitotic HeLa cell extracts to 1% sodium deoxycholate, the majority of the rapidly sedimenting U1 RNA shifted to lower sedimentation rates. This suggests that it is associated with heterogeneous nuclear RNA ribonucleoprotein particles, instead of a ribosomal population. Erythrocyte ghost-mediated microinjection of anti-(U1)RNP antibodies into synchronized HeLa cells did not prevent the suppression of protein synthesis that is observed under mitosis. Examination of the published nucleotide sequences of U1 and U2 RNA suggests that these RNA species could potentially code for some short peptides. When purified U1 or U2 RNA were added to cell-free polypeptide synthesizing systems, the synthesis of these peptides was not detected.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 137 (1988), S. 529-536 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We observed a series of rapidly labeled U6 RNA bands, which were hybrid selected with U6 DNA, in nonirradiated human cells. The electrophoretic mobility of these bands in denaturing gels was lower than that of the known mature U6 RNA species, and was equivalent to transcripts up to ∼7 nucleotides longer. These multiple U6 RNA species lost their label during a chase without a proportional increase in radioactivity in the known mature U6 RNA, which suggests that a substantial fraction is not processed into the major mature U6 RNA. During a label chase, the multiple U6 RNA bands appeared first in the cytoplasmic fraction and later in nuclei. One of the major rapidly labeled U6 RNA bands had the electrophoretic mobility of an RNA species one nucleotide shorter than the known mature U6 RNA. UV light induced a UV dose-dependent, preferential disappearance of recently synthesized molecules of the U6 RNA species of higher gel electrophoretic mobility, including the known mature U6 RNA. Since this effect was seen in cells pulse-labeled immediately before or after irradiation, it suggests that UV radiation induces the specific degradation of the electrophoretically faster moving species of U6 RNA, which are apparently shorter chains. The effect of UV light was RNA species-specific, was not seen in molecules synthesized long (e.g., 22 hr) before irradiation, and occurred in human and mouse cells.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 138 (1989), S. 205-207 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Eight hours after infection of KB cells with adenovirus type 12, the rate of conversion from the 32S ribosomal RNA (rRNA) precursor to mature 28S and 5.8S rRNA decreased. An additional RNA species was detected, which appears to be novel, on the basis of its estimated size (about 6.5 kilobases) and its high level of radiolabeling early after infection at low multiplicity.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 102 (1980), S. 199-207 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: It has been previously shown that newly synthesized nuclear low molecular weight RNA species C and D are first detected in the cytoplasm for a few minutes before they are finally found in the nucleus. The following are some of the observations made in the present study, regarding the formation of C and D RNA: (1) The 5′ end cap ribose methylation of the C RNA precursor is complete in its cytoplasmic stage; the internal ribose methylation of the precursor seems to be completed about the time of its apparent transition from cytoplasm to nucleus. (2) The few nucleotides lost from the D RNA precursor during maturation seem to be excised sometime near its apparent cytoplasmic → nuclear transition. Newly synthesized C RNA also appears to lose some of its non-conserved nucleotides about the time of that transition, while the other extra nucleotides are lost later, in the nucleus. (3) The maturation of C and D RNA is inhibited early during suppression of protein synthesis by cycloheximide, while their synthesis is not. (4) The cytoplasmic precursors of C and D RNA are not associated with ribonucleoprotein particles as large as those reported for mature C and D RNA, although they do not appear to be free in the cytoplasm. (5) When the cellular UTP pool is depleted by exposure of the cells to amino sugars, and the synthesis of C, D, and other RNA species decreases, the level of[3H]uridine labeling of C and D RNA increases, while that of 4 S and 5 S RNA does not. These data are compatible with the existence of more than one nuclear UTP pool.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 117 (1983), S. 128-134 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Several observations have been made about the associations of small nuclear RNAs (snRNAs) in human cells. When nuclear RNA was extracted with phenol and chloroform under standard nondenaturing conditions, the proportion of the nuclear snRNA content that cosedimented with high molecular weight RNA was very low. These results do not support the proposal that it is a large percentage of the cellular snRNA content that is involved in relatively stable base-paired interactions with heterogeneous nuclear RNA at any given time. The various small nuclear ribonucleoprotein particles (snRNPs), in which the snRNAs are found in the cell, appear to differ substantially in their sedimentation rates under conditions of physiological ionic strength. Using anti-RNP and anti-Sm antibodies to analyze various subcellular fractions, we found that most, if not all, of the U1 snRNA cellular content is associated with the polypeptide(s) bearing the RNP determinant (in interphase and mitotic cells) and with the polypeptide(s) carrying the Sm determinant (in mitotic cells).
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...