Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 8 (1985), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Possible effects of increased atmospheric concentrations of CO2 on forest ecosystems are discussed and as an example a simulation case study using a set of mixed-age and mixed-species forest stand models is presented. The responses of the models to a simple scenario (uniform growth increase of all trees as a response to CO2 enrichment) include increases in biomass that are considerably less than the increases in growth rate of the trees. These simulations and more general discussion of the possible effects of increased photosynthetic production identify the problem of scaling-up small time-scale and space-scale measurements of plant responses to CO2 enrichment to the ecosystem level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 64 (1992), S. 345-363 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Responses of terrestrial ecosystems to a world undergoing a change in atmospheric CO2 concentration presents a formidable challenge to terrestrial ecosystem scientists. Strong relationships among climate, atmosphere, soils and biota at many different temporal and spatial scales make the understanding and prediction of changes in net ecosystem production (NEP) at a global scale difficult. Global C cycle models have implicitly attempted to account for some of this complexity by adapting lower pool sizes and smaller flux rates representing large regions and long temporal averages than values appropriate for a small area. However, it is becoming increasingly evident that terrestrial ecosystems may be experiencing a strong transient forcing as a result of increasing levels of atmospheric CO2 that will require a finer temporal and spatial representation of terrestrial systems than the parameters for current global C cycle models allow. To adequately represent terrestrial systems in the global C cycle it is necessary to explicitly model the response of terrestrial systems to primary environmental factors. While considerable progress has been made experimentally and conceptually in aspects of photosynthetic responses, and gross and net primary production, the application of this understanding to NEP at individual sites is not well developed. This is an essential step in determining effects of plant physiological responses on the global C cycle. We use a forest stand succession model to explore the effects of several possible plant responses to elevated atmospheric CO2 concentration. These simulations show that ecosystem C storage can be increased by increases in individual tree growth rate, reduced transpiration, or increases in fine root production commensurate with experimental observations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...