Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 67 (1987), S. 41-51 
    ISSN: 1432-1106
    Keywords: Trauma ; Neuron ; Culture ; Calcium ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Cultured mouse spinal neurons were fixed at three different intervals after dendrite amputation: within the first 15 min, at 2 h and at 24 h. Dendrites were amputated at lesion distance of either 50 μm (31% probability of cell survival) or 100 μm (53% probability of cell survival) from the edge of their perikarya. When fixed within 15 min, operated neurons showed a two-phase gradient of ultrastructural damage which spread from the transection site towards the perikaryon. At 2 h after dendrite amputation all neurons operated close to their perikarya were categorized as either viable, moribund or dead, based on their appearance with phase contrast microscopy. These categories of response to physical trauma corresponded to distinctly different ultrastructural changes. Moribund neurons were filled with membrane-bound vesicles which were derived from swollen mitochondria and grossly dilated cisternae of the smooth endoplasmic reticulum. The cytoplasm of dead neurons contained large clear areas and many condensed, dark mitochondria. Both moribund and dead neurons lacked cytoskeletal elements. All of these ultrastructural changes are hypothesized to be the result of an increase in the intracellular concentrations of free calcium. Although evidence of residual mitochondrial swelling was present in some surviving neurons at 24 h, the ultrastructure of others was comparable to that of control cells. Some surviving neurons had terminal swellings at the ends of the severed neurites which were very similar to retraction balls of transected axons after CNS trauma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 86 (1991), S. 60-72 
    ISSN: 1432-1106
    Keywords: Trauma ; Neuron ; Sodium ; Chloride ; Ultrastructure ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To determine the contributions of sodium and chloride to ultrastructural changes after mechanical injury, we amputated primary dendrites of cultured mouse spinal neurons in low calcium medium in which sodium chloride had been replaced with either choline chloride or sodium isethionate or sodium propionate. Uninjured cultured neurons were also exposed to the sodium ionophore, monensin. A third set of neurons was injured in medium in which all sodium and calcium chloride had been replaced with sucrose. Neurons injured in low-calcium, low-sodium medium exhibited few ultrastructural changes, except very near the lesion, where there was some dilation of mitochondria and cisternae of the smooth endoplasmic reticulum (SER). Mitochondria in other regions of the neurons developed an electron opaque matrix, and those nearer to the lesion converted to the condensed configuration, characterized by expanded intracristal spaces as well as a dense matrix. If sodium but not chloride was present in the medium, there was some dilation of the Golgi cisternae after injury, as well as some increased electron opacity of the mitochondria. Monensin treated neurons also exhibited dilation of the Golgi cisternae. Neurons injured in sucrose-substituted medium showed none of the changes associated with injury in normal culture medium. These results indicate that sodium influx through the lesion is involved in the dilation of the SER, which is seen even in low-calcium medium, and that a permeant anion, such as chloride, is also involved. This dilation of the SER may result from uptake of calcium released from mitochondria in response to elevated cytosolic sodium. Dilation of the Golgi cisternae appears to be a response only to elevated intracellular sodium. Condensation of the mitochondria after injury is thought to be due to increased demands for ATP synthesis and may involve a “futile cycling” of calcium across the mitochondrial membrane, involving sodium-mediated calcium release in response to elevated intracellular calcium.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...