Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 222 (1994), S. 19-32 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Homozygous recessive cardiac mutant gene c in the axolotl, Ambystoma mexicanum, results in a failure of the embryonic heart to initiate beating. Previous studies show that mutant axolotl hearts fail to form sarcomeric myofibrils even though hearts from their normal siblings exhibit organized myofibrils beginning at stage 34-35. In the present study, the proteins titin and myosin are studied using normal (+/+) axolotl embryonic hearts at stages 26-35. Additionally, titin is examined in normal (+/c) and cardiac mutant (c/c) embryonic axolotl hearts using immunofluorescent microscopy at stages 35-42. At tailbud stage-26, the ventromedially migrating sheets of precardiac mesoderm appear as two-cell-layers. Myosin shows periodic staining at the cell peripheries of the presumptive heart cells at this stage, whereas titin is not yet detectable by immunofluorescent microscopy. At preheartbeat stages 32-33, a myocardial tube begins to form around the endocardial tube. In some areas, periodic myosin staining is found to be separated from the titin staining; other areas in the heart at this stage show a co-localization of the two proteins. Both titin and myosin begin to incorporate into myofibrils at stage 35, when normal hearts initiate beating. Additionally, areas with amorphous staining for both proteins are observed at this stage. These observations indicate that titin and myosin accumulate independently at very early premyofibril stages; the two proteins then appear to associate closely just before assembly into myofibrils. Staining for titin in freshly frozen and paraffin-embedded tissues of normal embryonic hearts at stages 35, 39, and 41 reveals an increased organization of the protein into sarcomeres as development progresses. The mutant siblings, however, first show titin staining only limited to the peripheries of yolk platelets. Although substantial quantities of titin accumulate in mutant hearts at later stages of development (39 and 41), it does not become organized into myofibrils as in normal cells at these stages. © 1994 Wiley-Liss, Inc.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...