Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature structural biology 3 (1996), S. 155-162 
    ISSN: 1072-8368
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] We report the 2.4 Å X-ray crystal structure of a protein with chitosan endo-hydrolase activity isolated from Streptomyces N174. The structure was solved using phases acquired by SIRAS from a two-site methyl mercury derivative combined with solvent flattening and non-crystallographic two-fold ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 24 (1996), S. 266-268 
    ISSN: 0887-3585
    Keywords: polyamines ; group IV decarboxylases ; pyridoxal phosphate ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Crystals of truncated (Δ425-461) pyridoxal-5′-phosphate (PLP)-dependent mouse ornithine decarboxylase (mOrnDC′) have been obtained that diffract to 2.2 Å resolution (P21212, a = 119.5 Å, b = 74.3 Å, c = 46.1 Å). OrnDC produces putrescine, which is the precursor for the synthesis of polyamines in eukaryotes. Regulation of activity and understanding of the mechanism of action of this enzyme may aid in the development of compounds against cancer. mOrnDC is a member of group IV PLP-dependent decarboxylases, for which there are no known representative structures.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0741-0581
    Keywords: Proteins ; Molecular structure ; Negative-stain electron microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Natural Sciences in General
    Notes: The structure of ornithine decarboxylase (Mr ≍ 1.04 × 106) from Lactobacillus 30a was investigated by electron microscopy and x-ray crystallography. Electron micrographs showed the structure to be well preserved in methylamine tungstate stain. The molecules interacted little with the Butvar support film, yielding three unique projections: a hexagonal ring (front view) and two rod-shaped projections (edge views). Stereo pairs revealed a novel feature of the Butvar film in that some molecules were suspended in the stain in random orientations. Consequently, the relatedness of the hexagonal ring and the rod-shaped particles could be demonstrated since some particle shapes interconverted when the stage was tilted ± 45°. The two edge views were related by a 30° rotation about the sixfold axis. Image averaging of the three primary views suggested a dodecamer (point group symmetry 622) composed of two hexameric rings, apparently in an eclipsed configuration. To investigate the structural organization of the complex, the dissociation of the enzyme was studied by electron microscopy. The dissociation process involved the initial breakage of the ring followed by separation of dimers from the ring (one subunit from each of the two hexamers). Thus, the dodecamer forms as a hexamer of dimers rather than a dimer of hexamers. These structural studies were confirmed and extended by x-ray crystallographic analysis. A 4.0-Å resolution electron density map revealed two hexameric rings, consisting of six closely associated dimers, tilted approximately 10° with respect to the molecular twofold axis. Electron density projections of the three primary views of the molecule derived from the x-ray data corresponded closely to those obtained from image averaging of the electron microscopy data, thereby establishing in a novel way the reliability of the electron microscopy studies. Methylamine tungstate stain and Butvar support film therefore offer unique advantages for investigating protein structures by electron microscopy.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...