Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 29 (1998), S. 319-343 
    ISSN: 0066-4162
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Endophytic fungi living asymptomatically within plant tissues have been found in virtually all plant species. Endophytes are considered plant mutualists: They receive nutrition and protection from the host plant while the host plant may benefit from enhanced competitive abilities and increased resistance to herbivores, pathogens, and various abiotic stresses. Limited evidence also indicates that endophytes may influence population dynamics, plant community diversity, and ecosystem function. However, most of the empirical evidence for this mutualism and its ecological consequences has been based on a few agronomic grass endophytes. More recent studies suggest that endophyte-host plant interactions are variable and range from antagonistic to mutualistic. A more comprehensive view of the ecology and evolution of endophytes and host plants is needed. This article discusses how life history traits-such as fungal reproduction and pattern of infections and genotypic variation and ecological factors-influence the direction and strength of the endophyte-host plant interaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 118 (1999), S. 297-305 
    ISSN: 1432-1939
    Keywords: Key wordsAcromyrmex ; Endophytic fungi ; Festuca ; Neotyphodium ; Mutualism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Endophytic fungi, particularly in the genus Neotyphodium, are thought to interact mutualistically with host grasses primarily by deterring herbivores and pathogens via production of alkaloidal mycotoxins. Little is known, however, about how these endophytes interact with host plants and herbivores outside the realm of agronomic forage grasses, such as tall fescue, and their livestock grazers or invertebrate pest herbivores. We tested the effects of Neotyphodium inhabiting introduced tall fescue and native Arizona fescue on preference, survival, and performance of the leaf-cutting ant, Acromyrmex versicolor, an important generalist herbivore in the southwestern United States. In a choice experiment, we determined preferences of foraging queens and workers for infected and uninfected tall fescue and Arizona fescue. In a no-choice experiment, we determined queen survival, worker production, and size of fungal gardens for foundress queens reared on diets of infected and uninfected tall fescue and Arizona fescue. Foraging workers and queens did not significantly prefer either uninfected tall fescue or Arizona fescue relative to infected grasses, although ants tended to harvest more uninfected than infected tall fescue and more infected than uninfected Arizona fescue. Queen survivorship and length of survival was greater on uninfected tall fescue, uninfected Arizona fescue, and infected Arizona fescue than on infected tall fescue or the standard diet of palo verde and mesquite leaves. No queens survived beyond 6 weeks of the study when fed the infected tall fescue diet, in contrast to the effects of the other diets. Likewise, worker production was much lower and fungal garden size much smaller on infected tall fescue than in all other treatments, including the standard diet. In general, ant colonies survived and performed better on uninfected tall fescue and infected and uninfected Arizona fescue than standard diets of palo verde and mesquite leaves. The interaction of Neotyphodium with its host grasses is highly variable and these endophytes may increase, not alter, or even decrease resistance to herbivores. The direction of the interaction depends on host and fungal genotype, herbivore species, and environmental factors. The presence of endophytes in most, if not all, host plants suggests that endophytes may alter foraging patterns, performance, and survival of herbivores, such as leaf-cutting ants, but not always in ways that increase host plant fitness.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Key words  Neotyphodium endophytes ; Festuca arizonica ; Anti-herbivore hypothesis ; Host plant clones ; Soil nutrients
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Neotyphodium endophytes in introduced agronomic grasses are well known to increase resistance to herbivores, but little is known of interactions between Neotyphodium endophytes and herbivores in native grass populations. We investigated whether endophytes mediate plant-herbivore interactions in a native grass species, Festuca arizonica in the southwestern United States, in two ways. First, to test the prediction that the presence and frequency of endophyte-infected (E+) plants should increase with increasing herbivory, we determined endophyte frequencies over a 4-year period in six natural Arizona fescue populations. We compared Neotyphodium frequency among plants growing inside and outside long-term vertebrate grazing exclosures. Second, we experimentally tested the effects of Neotyphodium infection, plant clone, and soil nutrients on plant resistance to the native grasshopper Xanthippus corallipes. Contrary to predictions based upon the hypothesis that endophytes increase herbivore resistance, levels of infection did not increase in plants subjected to grazing outside of exclosures relative to ungrazed plants within exclosures. Instead, endophyte frequencies tended to be greater inside the exclosures, where long-term vertebrate grazing was reduced. The grasshopper bioassay experiment corroborated these long-term patterns. Survival of grasshoppers did not differ between infected (E+) and uninfected (E–) plants. Instead, mean relative growth rate of grasshoppers was higher on E+ grasses than on E– ones. Growth performance of newly hatched grasshopper nymphs varied among host plant clones, although two of six clones accounted for most of this variation. Our results suggest that Neotyphodium-grass-herbivore interactions may be much more variable in natural communities than predicted by studies of agronomically important Neotyphodium-grass associations, and herbivory is not always the driving selective force in endophyte-grass ecology and evolution. Thus, alternative hypotheses are necessary to explain the wide distribution and variable frequencies of endophytes in natural plant populations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...