Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-234X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The terrestrial crabsGeograpsus grayi, Geograpsus crinipes, Cardisoma hirtipes andGecarcoidea natalis have a reduced number of gills and show a reduced planar gill surface (SA) compared to aquatic species. Gill lamellae are stiffened and thickened (increasing blood/gas (BG) diffusion distances) and nodules maintain wide spacing between lamellae. Haemolymph is directed through the gill lamellae by rows of pillar cells and in the afferent region an intralamellar septum splits the haemolymph into two parallel networks. Gaps in the lines of pillar cells allow movement of haemolymph between adjacent channels. The afferent vessel distributes haemolymph to the lamella via a number of direct channels including the marginal canal and in large gills with the aid of a long, forked sinus which supplies the ventral and central regions of the lamellae. The marginal canal functions in both distribution and collection of haemolymph; the role varies with species. Potential flow-control sites were identified at the junctions between afferent and efferent areas and where the efferent channels enter the efferent branchial vessel. Each gill receives a branch from the sternal artery which supplies all the lamellae. Transport epithelia is the principal cell type in the gills of all species examined though its location varies between species, either being confined to certain gills or specific parts of the lamellae. The gill lamellae of air-breathing crabs are clearly modified to breathe air (stiffening and presence of nodules), though the overall contribution of the gills to gas exchange has been reduced (smaller SA and longer BG diffusion distances). The role of the gills in air-breathing crabs thus appears to have switched from one of an efficient aquatic gas-exchanger (thin with large surface area) and transport tissue, to one that is predominantly set up for ion-regulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 215 (1993), S. 245-260 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The highly terrestrial grapsids and gecarcinids and the amphibious sundathelphusids all have large, expanded branchial chambers. The lining of the branchial chambers is smooth and well vascularized, and it functions as a lung. The respiratory membrane and the cuticle lining the lung are extremely thin (200-350 nm). The blood vessels within the lung are formed from connective tissue cells supported by collagen fibres and lined by a basal lamina. The major vessels in the lung are embedded deep in the branchiostegite and lie just beneath the thick outer carapace. These vessels branch towards the respiratory membrane, where they eventually lose their connective tissue coverings to form thin, flattened lacunae directly below the respiratory epithelium. The lacunae (exchange sites) are bordered by specialized connective tissue cells, which either bear microvilli on their apical surface (fimbriated cells) or are very smooth. The respiratory circulation in the lung is very complex, with two portal systems present between the afferent and efferent systems, producing a total of three lacunal exchange beds. Portal systems increase the surface area available for gas exchange. The major distributing vessel in the lung is the branchiostegal vein, which runs along the inner margin of the branchiostegite. The main venous supplies come anteriorly from the infraorbital and ventral sinuses and posteriorly from the procardial sinus. The main collecting vessel is the pulmonary vein, which arises anteriorly and which runs around the ventral perimeter of the branchiostegite before emptying into the pericardial sinus. © 1993 Wiley-Liss, Inc.
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...