Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Micturition ; Spinal cord lesions ; Thoracic spinal cord ; Pudendal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Electrical stimulation of the spinal cord above the sacral segments was used to produce coordinated micturition in the paralysed decerebrate cat. Stimulation of the superficial aspect of the dorsolateral funiculus (DLF) within the lower thoracic (T9-T13) segments produced a bladder contraction coordinated with decreased activity in the external urethral sphincter (EUS) branch of the pudendal nerve during which time fluid was expelled. In addition, a similar response was observed with DLF stimulation at the boundary of the L5/L6 segments. At the second cervical spinal segment, however, stimulation of a more lateral and ventral portion of the superficial spinal white matter was the only effective site for producing micturition. The spinal cord-evoked response was comparable to the micturition evoked by electrical stimulation of the pontine micturition centre (PMC) within the brainstem. A bilateral lesion of the dorsal columns (DC) and the dorsolateral funiculi (DLF) at the lower thoracic levels abolished reflex micturition evoked by bladder distension. However stimulation rostral to the lesion, within the PMC or thoracic DLF, continued to produce coordinated bladder and sphincter response during voiding. Stimulation caudal to the lesion produced a decrease in pudendal nerve activity but did not produce a void or bladder pressure change. This reduction in pudendal nerve activity could be abolished with a second lesion of the superficial DLF caudal to the stimulation site. It was concluded that stimulation of the thoracic dorsolateral funiculus activates both ascending and descending fibres which can influence the bladder and/or sphincter muscles. The spinal cordevoked voiding was hypothesized to be due to activation of some portion of the ascending limb of the spinobulbospinal micturition reflex loop. The decreased activity produced by stimulation of the thoracic DLF caudal to a bilateral DC/DLF subtotal cord lesion may be mediated by fibres descending in the dorsolateral funiculus. The possibility that the spinal cord stimulation antidromically activated axons of neurons having segmental collaterals capable of influencing pudendal neural activity cannot be exclused at this time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Sacral reflexes ; Micturition ; Interneurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Electrical stimulation of sensory pudendal and superficial perineal nerves evokes focal synaptic potentials produced by activation of spinal neurons in the lumbosacral gray matter in chloralose anesthetized or decerebrate cats. The field potentials evoked by sensory pudendal nerve stimulation were located in medial parts of laminae V and VI, and lamina X in the S1 to S3 spinal segments. The superficial perineal cutaneous field potentials partially overlapped with those produced by the pudendal nerve, but in general were localized more laterally in laminae V and VI. The central latencies of the earliest portion of the field potentials evoked by either sensory pudendal or superficial perineal nerves were less than 0.9 ms suggesting that monosynaptic activation of neurons contributed to the potentials.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 89 (1992), S. 511-516 
    ISSN: 1432-1106
    Keywords: Micturition ; Defecation ; Sphincter ; Cutaneous ; Spinal cord reflexes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The external urethral sphincter (EUS) and external anal sphincter (EAS) are striated muscles that function to maintain urinary and fecal continence respectively. This study examines the short-latency synaptic input from a variety of cutaneous perineal and muscle/cutaneous hindlimb afferents to the motoneurons innervating these muscles. Intracellular recordings from anti dromically identified EUS and EAS motoneurons provided records of the postsynaptic potentials (PSPs) produced by electrical stimulation of peripheral afferents in decerebrate or chloralose anesthetized cats. Excitatory postsynaptic potentials (EPSPs) were produced in most EUS and EAS motoneurons by stimulation of ipsilateral and contralateral sensory pudendal (SPud) and superficial perineal (SPeri) cutaneous nerves. The shortest cen tral latencies in the study (1.5 ms) suggest that there are disynaptic excitatory, in addition to tri-and oligosynap tic, connections within these reflex pathways. EPSPs mixed with longer latency inhibitory potentials (E/I PSPs) were observed in both motoneuron populations but were found more frequently in EAS motoneurons. These E/I PSPs were evoked more often from contralat eral afferents than from ipsilateral afferents. Cutaneous nerves innervating the hindlimb had weaker if any synaptic effects on sphincter motoneurons. Stimulation of ipsilateral hindlimb muscle nerves rarely produced PSPs in EUS motoneurons and had weak synaptic actions on EAS motoneurons. In 2 of 22 animals (both decerebrate), large inhibitory potentials predominated over early small EPSPs suggesting that inhibitory pathways from these afferents to sphincter motoneurons can be released under certain circumstances. The relation between the segmental afferents to EUS and EAS motoneurons and the neural circuitry influencing them during micturition and defecation are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Key words Locomotion ; Central pattern generator ; Mesencephalic locomotor region ; Clonidine ; Intrathecal application ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The existence of a spinal network capable of generating rhythmic alternating activity resembling locomotion still has not been firmly established in primates, including man, although evidence for one is accumulating. The present study investigated whether it is possible to activate such a network by administration of a variety of pharmacological agents to acutely spinalized marmoset monkeys (Callithrix jacchus) in the absence of phasic afferent input to the spinal cord. Fourteen marmoset monkeys were decerebrated, spinalized, and paralyzed. The nerves supplying both hindlimbs were cut and recorded from. In 5 monkeys the effect of electrical stimulation of the brainstem was investigated before spinalization. In 3 of these monkeys, rhythmic activity alternating between extensors and flexor nerves was seen. In the 2 other monkeys only synchronized activity was elicited. In acutely spinalized monkeys, administration of l-3,4-dihydroxyphenylalanine (l-dopa; 3–4 h after treatment with nialamide) failed to evoke any rhythmic alternating activity. In contrast, administration of clonidine elicited alternating activity in all of 8 monkeys tested. In 4 of these monkeys, the activity was restricted to alternation between ipsilateral and contralateral flexor nerves, whereas alternating activity between ipsilateral flexors and extensors was also seen in the other 4 monkeys. Administration of excitatory amino acids (NMDA or NMA) also elicited rhythmic alternating activity in 7 of 10 spinalized monkeys. In 4, rhythmic alternating activity was seen between extensors and flexors on one limb as well as between ipsilateral and contralateral flexors. In 3 monkeys NMDA/NMA produced alternation between extensors and flexors of one limb without alternation between the ipsilateral and contralateral sides. Administration of noradrenaline failed to elicit any rhythmic activity, but rather completely depressed already existing activity. Administration of serotonin (5-HT) was ineffective in facilitating alternating activity in 6 of 8 monkeys and was facilitatory to rhythmic activity in the other 2. We suggest that these data provide further evidence of a network capable of eliciting rhythmic alternating activity resembling locomotion in the primate spinal cord. The network, however, seems to be more difficult to activate pharmacologically in those conditions than in other mammals. This may especially be the case in higher primates, including man.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...