Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Basic fibroblast growth factor (bFGF) is present in the developing rat brain and has been shown to provide critical trophic support for hippocampal neurons in culture. The influence of bFGF on the expression of mRNAs encoding the transcription factors zif/268 and c-fos was studied in primary cultures of hippocampal neurons (derived from rat embryos) using reverse transcription-coupled PCR. In these cultures grown for 3 days in the absence of serum, bFGF causes a dramatic and transient increase in the levels of zif/268 and c-fos, within 15 and 30 min, respectively. A similar induction of these two early genes occurs following activation of protein kinase C (PKC). The bFGF-induced activation persists after PKC desensitization but is inhibited by chelation of intracellular Ca2+. These results suggest that in primary cultures of hippocampal neurons, bFGF induces the expression of immediate early genes through a pathway that requires Ca2+ mobilization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Kainate (KA) is a potent neuroexcitatory agent in several areas of the adult brain, with convulsant and excitotoxic properties that increase as ontogeny proceeds. Besides its depolarizing actions, KA may enhance intracellular accumulation of Ca 2+ to promote selective neuronal damage. The effects of KA are mediated by specific receptors recently considered to be involved in fast neurotransmission and that can be activated synaptically. KA receptors, e.g. GluR5 and GluR6 have been characterized by molecular cloning. Structure–function relationships indicate that in the MII domain of these KA receptors, a glutamine (Q) or arginine (R) residue determines ion selectivity. The arginine stems from post-transcriptional editing of the GluR5 and GluR6 pre-RNAs, and the unedited and edited versions of GluR6 elicit distinct Ca2+ permeability. Using a PCR-based approach, we show that in vivo, Q/R editing in the GluR5 and GluR6 mRNAs is modulated during ontogeny and differs substantially in a variety of nervous tissues. GluR5 editing is highest in peripheral nervous tissue, e.g. the dorsal root ganglia, where GluR6 expression is barely detectable. In contrast, GluR6 editing is maximal in forebrain and cerebellar structures where GluR5 editing is lower. Intra-amygdaloid injections of KA provide a model of temporal lobe epilepsy, and we show that following seizures, the extent of GluR5 and GluR6 editing is altered in the hippocampus. However, in vitro, high levels of glutamate and potassium-induced depolarizations have no effect on GluR5 and GluR6 Q/R editing. GluR6 editing is rapidly enhanced to maximal levels in primary cultures of cerebellar granule neurons but not in cultured hippocampal pyramidal neurons. Finally, we show that cultured glial cells express partially edited GluR6 mRNAs. Our results indicate that Q/R editing of GluR5 and GluR6 mRNAs is structure-, cell type- and time-dependent, and suggest that editing of these mRNAs is not co-regulated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 10 (1998), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The kinesin-related motor protein CHO1/MKLP1 was initially thought to be expressed only in mitotic cells, where it presumably transports oppositely oriented microtubules relative to one another in the spindle mid-zone. We have recently shown that CHO1/MKLP1 is also expressed in cultured neuronal cells, where it is enriched in developing dendrites ( Sharp et al. 1997a ) J. Cell Biol., 138, 833–843]. The putative function of CHO1/MKLP1 in these postmitotic cells is to intercalate minus-end-distal microtubules among oppositely oriented microtubules within developing dendrites, thereby establishing their non-uniform microtubule polarity pattern. Here we used in situ hybridization to determine whether CHO1/MKLP1 is expressed in a variety of rodent neurons both in vivo and in vitro. These analyses revealed that CHO1/MKLP1 is expressed within various neuronal populations of the brain including those in the cerebral cortex, hippocampus, olfactory bulb and cerebellum. The messenger ribonucleic acid (mRNA) levels are high within these neurons well after the completion of their terminal mitotic division and throughout the development of their dendrites. After this, the levels decrease and are relatively low within the adult brain. Parallel analyses on developing hippocampal neurons in culture indicate that the levels of expression increase dramatically just prior to dendritic development, and then decrease somewhat after the dendrites have differentiated. Dorsal root ganglion neurons, which generate axons but not dendrites, express significantly lower levels of mRNA for CHO1/MKLP1 than hippocampal or sympathetic neurons. These results are consistent with the proposed role of CHO1/MKLP1 in establishing the dendritic microtubule array.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The brain microtubule-associated protein MAP2 family is composed of high-molecular-weight (MAP2a and MAP2b) and low-molecular-weight (MAP2c and MAP2d) isoforms. The common C-terminal region of HMW MAP2 and MAP2c contains three repeated microtubule-binding domains while MAP2d comprises four repeats. MAP2c mRNA is known to be expressed at high levels in the immature brain. We show that in the brains of rat pups, MAP2c mRNAs are indeed expressed at high levels compared with MAP2d. However, in adult rat brains, MAP2d mRNA levels are higher than MAP2c. In order to identify the neural cells expressing MAP2d, we used in situ hybridization. In vivo, we show that MAP2d mRNA is expressed in well-identified neuronal populations of the brain. In primary cultures of hippocampal neurones, double-labelling experiments confirm that MAP2d is clearly expressed in neurones. We also evaluated in this study the subcellular distribution of the MAP2d mRNAs in cultured hippocampal neurones and we report that in contrast with MAP2b mRNAs, mostly localized in dendrites, MAP2d mRNAs are essentially located in neuronal cell bodies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 9 (1997), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Basic fibroblast growth factor (FGF-2) is expressed in the hippocampus and has been demonstrated to promote neurotrophic effects on hippocampal neurons in vifro. We show that these neurons, even at the embryonic stage, express the mRNAs encoding the FGF receptors, bek and flg. We have characterized the effects of FGF-2 on the expression of nerve growth factor (NGF) using the reverse transcription-coupled polymerase chain reaction, in situ hybridization and immunocytochemistry. In hippocampal neurons grown in the absence of serum, FGFB exposure induces an important elevation of NGF mRNA expression followed by a marked increase in NGF immunoreactivity. Combining in situ hybridization with an NGF probe and microtubule-associated protein-2 (MAP2) immunocytochemistry we show that the induction of NGF mRNA by FGF-2 is localized in MAP2–immunoreactive neurons. These results suggest roles for FGF-2 in the development of hippocampal neurons and in the maintenance of connections in the central nervous system, particularly the septo-hippocampal pathway, via the regulation of an important neurotrophins
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Calponin is an actin-, tropomyosin- and Ca2+ calmodulin-binding protein that inhibits in vitro the actomyosin MgATPase. Basic and acidic variants of calponin have been described to date. Although the cerebral expression of calponin remained controversial for some time, transcripts encoding acidic calponin in the adult rat brain and calponin immunoreactivity in rat and pig brain and in cultured cerebellar cells have been reported. In the present work, we report the expression of acidic calponin mRNAs and the isolation of cDNAs encoding the full-length acidic calponin in cultured neuronal and glial cells and in adult rat brain. Sequence analysis reveals that acidic calponin in the brain is identical to that previously described in rat aortic vascular smooth muscle. In situ hybridization shows that calponin is highly expressed during ontogenesis in granule cells of the dentate gyrus of the hippocampus, in all layers of the olfactory bulb and in cerebellar granule neurons of the external and internal layers. In the adult rat brain, calponin expression decreased in these fields, but increased in choroid plexus cells. Bergmann glial cells were also labelled by a calponin probe. The reverse transcription-coupled polymerase chain reaction confirms that calponin mRNA levels are highest in the early stages of hippocampal development and that expression levels are low in adult hippocampi. The developmental expression pattern of brain acidic calponin suggests that calponin could be involved in contractile activity associated with neural cell proliferation or neuronal migration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-7381
    Keywords: microtubule ; NuMA ; neuron ; dendrite ; axon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Neurons are terminally post-mitotic cells that utilize their microrubule arrays for the growth and maintenance of axons and dendrites rather than for the formation of mitotic spindles. Recent studies from our laboratory suggest that the mechanisms that organize the axonal and dendritic microtubule arrays may be variations on the same mechanisms that organize the mitotic spindle in dividing cells. In particular, we have identified molecular motor proteins that serve analogous functions in the establishment of these seemingly very different microtubule arrays. In the present study, we have sought to determine whether a non-motor protein termed NuMA is also a component of both systems. NuMA is a ~230 kDa structural protein that is present exclusively in the nucleus during interphase. During mitosis, NuMA forms aggregates that interact with microtubules and certain motor proteins. As a result of these interactions, NuMA is thought to draw together the minus-ends of microtubules, thereby helping to organize them into a bipolar spindle. In contrast to mitotic cells, post-mitotic neurons display NuMA both in the nucleus and in the cytoplasm. NuMA appears as multiple small particles within the somatodendritic compartment of the neuron, where its levels increase during early dendritic differentation. A partial but not complete colocalization with minus-ends of microtubules is suggested by the distribution of the particles during development and during drug treatments that alter the microtubule array. These observations provide an initial set of clues regarding a potentially important function of NuMA in the organization of microtubules within the somatodendritic compartment of the neuron.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...