Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Neurofibromatosis type 2 is an autosomal dominant disorder characterized by tumors, predominantly schwannomas, in the nervous system. It is caused by mutations in the gene NF2, encoding the growth regulator schwannomin (also known as merlin). Mutations occur throughout the 17-exon gene, with most ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Interruption of axonal continuity in peripheral nerve trunks leads to axonal and myelin breakdown and removal distal to the injury site, a process known as Wallerian degeneration. Clearance of axonal and myelin debris has been attributed to the cooperative actions of two cell types, the indigenous Schwann cells and macrophages recruited to the regions of tissue damage. Recent work in this area has suggested a limited role for Schwann cells in myelin degradation and has emphasized the role of macrophages, not only in myelin clearance but also in the stimulation of Schwann cell proliferation which also occurs during Wallerian degeneration. In this report, we demonstrate that rat Schwann cells are capable of substantial myelin degradation unaided by macrophages. Observations were made following excision of neuronal somata from well-myelinated rat dorsal root ganglion neuron/Schwann cell co-cultures. The various stages of myelin breakdown were observed by phase microscopy, Sudan black staining, or electron microscopy. The time course for breakdown of individual myelin internodes varied from 2 to 10 days after injury and was to some extent dependent upon the original internodal length. Additionally, we show that most Schwann cells involved in Wallerian degeneration in the absence of macrophages undergo cell division following degradation of myelin into granules visible by light microscopy. The co-cultures employed were essentially free of macrophages as assessed by immunostaining for the OX42, ED2, and ED1 macrophage markers. No macrophages were detected by light or electron microscopy in the vicinity of the identified Schwann cells and furthermore, macrophages/monocytes were rarely observed in uninjured co-cultures as assessed by fluorochrome-conjugated acetylated LDL labelling. These results provide evidence in support of the ability of Schwann cells to carry out degradation of short myelin segments and to proliferate without macrophage assistance during Wallerian degenerationin vitro.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...