Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We recently found that alternative transcripts of tissue transglutaminase (tTG or TG2) were present in hippocampal brain regions of Alzheimer's disease (AD), but not in control, non-demented, age-matched brains. Since antecedent non-severe trauma has been implicated in AD and other neurodegenerative diseases, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), we were interested in whether alternative transcripts might be detected in a model of neurotrauma, controlled-contusion spinal cord injury (SCI) in the rat. Implicated in diverse roles from growth and differentiation to apoptotic cell death, only bifunctional tTG, of the nine member TG family, has dual catalytic activities: guanine trinucleotide (GTP) hydrolyzing activity (GTPase), as well as protein cross-linking. These functions imply two physiological functions: programmed cell life and death. These may have profound roles in the nervous system since studies in cultured astrocytes found tTG short (S) mRNA transcripts induced by treatment with injury-related cytokines. In the developing rat spinal cord, tTG activity is concentrated in ventral horn alpha motoneurons, but neither studies of spinal cord tTG gene expression, nor evaluation of the GTP-regulated isoforms in tissues, have been reported. We now report increased tTG protein and gene expression occurring rapidly after SCI. In parallel, novel appearance of a second, short form transcript, in addition to the normal long (L) isoform, occurs by 8 h of injury. Up-regulation of tTG message and activity following neural injury. with appearance of a truncated GTP-unregulated S form, may represent new approaches to drug targets in neurotrauma.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We addressed the balance between thrombin and its serpin protease nexin I (PNI) after sciatic nerve injury in the mouse. Prothrombin levels increased twofold 24 h after nerve crush, as measured by a specific chromogenic assay, and peaked at day 3. Thrombin activity also increased 2–4 days after injury in distal sciatic nerve segments. Nerve RNA analysis using reverse transcriptase-polymerase chain reaction (RT-PCR) assay confirmed that prothrombin was synthesized locally. We also monitored PNI levels in these injured nerve samples by complex formation with an 125I-labeled target protease and found peak activity occurring later, 6–9 days after the thrombin induction. These data indicate that nerve injury first induces the synthesis of prothrombin, which is subsequently converted to active thrombin. Nerve crush-induced thrombin is followed by the generation of functionally active PNI and may be directly responsible for its induction. By immunocytochemistry with anti-PNI antibody, we found that activated Schwann cells were the source of induced PNI. These results support the concept that the balance between serine proteases and their serpins is dysregulated during nerve injury and suggests a role for its reestablishment in nerve damage repair.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 58 (1992), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Cerebrospinal fluid (CSF) from 20 male patients with nonneurologic disease (age 64.5 ± 2.8 SEM) was analyzed for the presence of the serpin α1-antichymotrypsin (α1-ACT). A chymotrypsin-specific chromogenic substrate (succinyl-Ala-Ala-Pro-Phe-p-nitroanilide) was used to examine the CSF samples. All CSF samples showed inhibitory activity ranging from 45 to 80% inhibition. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the samples revealed the presence of a 68-kDa protein migrating identical to authentic human plasma α1-ACT. Complex formation was performed with iodinated bovine chymotrypsin for several representative CSF samples having the highest chymotrypsin inhibitory activity. Comparison was made with complex formation performed with commercially available authentic human plasma α1-ACT. These studies showed the formation of complexes at 37°C, regardless of whether the sample was subsequently boiled or not. In the case of CSF, two complex bands, mass smaller than with plasma α1-ACT, were formed at the lower temperature whereas a single higher Mr band was formed when the samples were boiled. To determine whether cleavage of the serpin occurred, these studies were repeated using human neutrophil cathepsin G as target protease. A complex of approximately 90 kDa was formed with human α1-ACT under these same conditions. α1-ACT has been detected in senile amyloid plaques in brains of Alzheimer's disease patients, the only plasma serine protease inhibitor localized to these structures. Another serpin, protease nexin I, is also found in these plaques, but this inhibitor does not circulate in plasma. Recently, the β-amyloid precursor protein itself has been identified as another serine protease inhibitor, protease nexin II, known to form complexes with bovine chymotrypsin as well as with the epidermal growth factor-binding protein. Protease nexin II does circulate in plasma; however, complexes of this inhibitor with chymotrypsin are twice as large as the complexes this protease forms with plasma α1-ACT or with the CSF samples. Using antisera to the β-amyloid precursor protein, other workers have detected both 125-kDa and 105-kDa proteins in human CSF, the 125 kDa reportedly detected by antisera against the Kunitz serine protease inhibitor-containing domain. The studies with α1-ACT in CSF should now allow us to evaluate this serpin and its function in CSF of patients with Alzheimer's and other neurodegenerative diseases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Activation of microglia, the resident macrophages in the CNS, plays a significant role in neuronal death or degeneration in a broad spectrum of CNS disorders. Recent studies indicate that nanomolar concentrations of the serine protease, thrombin, can activate microglia in culture. However, in contrast to other neural cells responsive to thrombin, the participation of novel protease-activated receptors (PARs), such as the prototypic thrombin receptor PAR1, in thrombin-induced microglial activation was cast in doubt. In this report, by utilizing primary microglial cultures from PAR1 knockout (PAR1–/–) mice, application of the PAR1 active peptide TRAP-6 (SFLLRN) in comparison to a scrambled peptide (LFLNR), we have unambiguously demonstrated that murine microglia constitutively express PAR1 mRNA that is translated into fully functional protein. Activation of the microglial PAR1 induces a rapid cytosolic free [Ca2+]i increase and transient activation of both p38 and p44/42 mitogen-activated protein kinases. Moreover, although in part, this PAR1 activation directly contributes to thrombin-induced microglial proliferation. Furthermore, although not directly inducing tumor necrosis factor-α (TNF-α) release, PAR1 activation up-regulates microglial CD40 expression and potentiates CD40 ligand-induced TNF-α production, thus indirectly contributing to microglial activation. Taken together, these results demonstrate an essential role of PAR1 in thrombin-induced microglial activation. In addition, strategies aimed at blocking thrombin signaling through PAR1 may be therapeutically valuable for diseases associated with cerebral vascular damage and significant inflammation with microglial activation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 32 (1979), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Multiple molecular forms of acetylcholinesterase (AChE; EC 3.1.1.7), in crude extracts of various tissues from the rat, were distinguished by velocity sedimentation analysis on linear sucrose gradients. Skeletal muscle samples containing end-plate regions showed three different forms of AChE with apparent sedimentation coefficients of 16, 10 and 4s. The 16s form was not detected in non-innervated regions of skeletal muscle, large intestine smooth muscle, whole brain tissue, red blood cells or plasma. Spinal cord, a predominantly motor cranial nerve and mixed (sensory and motor) peripheral nerves contained 16, 10, 6.5 and 4S AChE. Ventral motor roots, supplying the sciatic nerve, contained these four forms of the enzyme, while corresponding dorsal sensory roots were devoid of the 16S form. The 16s-AChE confined to ventral roots can be attributed totally to motor neurons and not to Schwann cells composing these roots. Whether the 16s-AChE presently found in motor nerves has chemical identity with that found at motor end-plates is the basis of future experiments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 421 (1983), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 32 (1977), S. 345-360 
    ISSN: 1432-1424
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The effects of denervation on the macromolecular components of active monovalent cation transport in skeletal muscle have been studied using purified sarcolemma membranes. A comparison of membrane activities of fast-twitch, slow-twitch, and mixed-fiber muscles was made to determine what role, if any, the motor nerve has in regulating this important aspect of muscle metabolism. A dramatic increase in the basal sarcolemmal Mg++ ATPase activity (three- to fourfold) was found for both major muscle types. An increase in the ouabain-inhibitable (Na++K+)-stimulated enzyme was also found, but the effect was substantially less (1.5- to twofold). [3H]-ouabain binding, as an index of glycoside receptor sites, also increased (two- to threefold) midway in the course of denervation. On the other hand, the phosphorylated intermediate activity, a functional component of the transport system, clearly decreased over the same time course and remained below control values for the remainder of the course. This resulted in a two- to threefold increase in the turnover number, suggesting that active transport of cations should increase dramatically with denervation. The membrane protein patterns on SDS gels were less obvious than the changes observed in the functional components. The major effects appeared after only one week and seemed to be restricted to high molecular weight membrane proteins, especially in the 100,000 to 250,000 daltons range. This effect was more prominent in slow-twitch membranes with an apparent semiquantitative decrease in stain at 240,000 daltons. In gels of membranes from fast-twitch muscles a decreased stain in the range of 100,000 to 110,000 daltons occurred, and this became more obvious with longer periods of denervation. The results suggest that considerable influence on the macromolecular components of active cation transport in skeletal muscle is exerted by the motor nerve. No appreciable difference was found in this effect when the two major types of skeletal muscle, fast-twitch and slow-twitch, were compared, suggesting that motor nerve regulation of this membrane property is qualitatively the same.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 32 (1977), S. 331-343 
    ISSN: 1432-1424
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Sarcolemmal membranes were prepared from slow-twitch (red) and fasttwitch (white) skeletal muscle of the rat. A sensitive adenylate cyclase assay was used and basal, fluoride- and catecholamine-stimulated activities measured. The greaterin vivo sensitivity of red muscle to the effects of catecholamines correlates, in the present study, with approximately a twofold stimulation of its sarcolemmal adenylate cyclase with isoproterenol (10 μm). The white muscle enzyme, on the other hand, is only minimally stimulated (20%) at the same concentration of β-adrenergic agonist. Fast-twitch muscle is known to be physiologically insensitive to catecholaminein vivo. A course of sciatic nerve denervation was followed to further distinguish these two metabolic types of skeletal muscle and their respective adenylate cyclases. The slow-twitch muscle enzyme activities were completely and permanently lost on denervation. The white muscle enzyme, however, recovered almost completely after an initial reduction in specific activity the first week. Interestingly, the NaF-stimulated activity lagged behind both the basal and hormone-stimulated activities of the white muscle enzyme, in returning to control levels. The activities of cyclic nucleotide phosphodiesterase were evaluated in homogenates of the two muscle types in innervated rats and following denervation, in order to further define the neural influence on skeletal muscle cyclic nucleotide metabolism. The results suggest that the motor nerve may regulate some of the metabolic properties of slow-twitch muscle (which may involve cyclic AMP) by controlling the responsiveness of its sarcolemmal-bound adenylate cyclase system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-7373
    Keywords: brain tumors ; fibrinolysis ; plasminogen activator inhibitor-1 ; plasminogen activators ; serpins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Considerable interest in the roles of serine proteases and serine protease inhibitors (serpins) in regulating physiologic and pathologic tissue remodeling has led to studies that indicate their critical participation in development and diseases of the brain. Plasminogen activator inhibitor-1 (PAI-1) is the most significant regulator of fibrinolysis in plasma, but little is known of the levels or activities of this important serpin in normal brain and brain tumors. For this reason, we estimated qualitative and quantitative levels of PAI-1 in normal human brain and various brain tumors. Western-blot results indicated that a 51 kDa band recognized with polyclonal anti-PAI-1 was more prominently in metastatic and glioblastoma than in meningiomas and lowgrade gliomas; normal human brain lacked any detectable band. Reverse zymography also showed high levels of PAI-1 in malignant brain tumors. The complex formation with125I-urokinase demonstrated that PAI-1 complex levels were increased in metastatic and glioblastoma when compared with low-grade gliomas and meningiomas. Since PAI-1 acts as a modulator of fibrinolysis, a better understanding of the balance between serine proteases and PAI-1 is likely to enhance our knowledge of brain tumor biology.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-6903
    Keywords: Neurotrophic ; paracrine ; regeneration ; nerve ; muscle ; ligation ; transport ; diabetes ; neuropathy ; ALS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In a previous study, we localized insulin-like growth factor binding protein 1 (IGFBP-1) to mouse neuromuscular junctions, and intramuscular nerves. To determine if pre-synaptic accumulation of IGFBP-1 occurred, we used double ligation of sciatic nerve in adult mice at different time points. IGFBPs were deteced by Western ligand blot (WLB) with125I-IGF-I. WLB and Western immunoblot (WIB) analysis of extracts from double-ligated nerves showed a delayed (6 days) increase of IGFBP-1 in the soluble fraction between the ligatures and distal to the distal ligature. For comparison we evaluated transport of neurofilament components, using WIB and confirmed the primarily anterograde transport of these intraaxonal proteins. These data suggest that expression of IGFBP-1 is both by activated Schwann cells as well as retrograde axonal transport with likely entry into the axon at the synapse.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...