Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    European journal of epidemiology 5 (1989), S. 15-21 
    ISSN: 1573-7284
    Keywords: Syphilis ; T. pallidum ; Endothelial cell interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Syphilis is a chronic disease characterized by hematogenous dissemination of Treponema pallidum into tissues such as the cardiovascular and central nervous systems. In order to test whether these aspects of the pathogenesis of syphilis reflect an ability of T. pallidum to invade vascular entothelial surfaces, we explored the association of T. pallidum with human and rabbit endothelial cells in vitro. Using radiolabeled motile organisms, we found that treponemal attachment was two times greater to rabbit aortic endothelial cells and human umbilical endothelial cells than to HeLa cells. Mild trypsinization of attached treponemes resulted in release from cells of all organisms detectable by darkfield microscopy without visible damage to the monolayer. Nevertheless, 25% of the counts representing T. pallidum remained associated with the cell monolayers. Further trypsin treatment to release the monolayer and differential centrifugation showed that 80% of the remaining cell-associated counts were not within the cells. These results suggest that some treponemes had associated with the monolayer in a trypsin resistant niche. Additionally, motile T. pallidum passed through tight functioned endothelial cell monolayers on membrane filters under conditions were heat-killed T. pallidum and the host indigenous nonpathogen. T. phagedenis biotype Reiter failed to do so. Electron micrographs of transverse sections through the monolayers showed many T. pallidum in junctions between endothelial cells. These studies suggest that T. pallidum may leave the circulation by passing between endothelial cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...