Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 56 (1991), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: An enzyme capable of cleaving dynorphin B-29 to dynorphin B-13 is present in bovine pituitary, with 40- to 50-fold higher specific activity in the posterior and intermediate lobes than in the anterior lobe. Subcellular fractionation of bovine neurointermediate pituitary shows that this enzyme is present in the peptide-containing secretory vesicles. The enzyme has been purified 2,800-fold from whole bovine pituitaries using ion-exchange and gel filtration chromatography. Purified dynorphin-converting enzyme has a neutral pH optimum, and is substantially inhibited by the thiol-protease inhibitor p-chloromercuriphenylsulfonic acid, but not by serine or metalloprotease inhibitors. The purified enzyme processes dynorphin B-29 at Arg14, producing both dynorphin B-14 and dynorphin B-13 in a 5:1 ratio. No other cleavages are observed, suggesting that the activity is free from other proteases and is specific for single Arg sequences. Purified enzyme also processes dynorphin A-17 at the single Arg cleavage site, generating both dynorphin A-8 and A-9 in a 7: 1 ratio. The tissue distribution, subcellular localization, and substrate specificity of this enzyme are consistent with a physiological role in the processing of dynorphin B-29 and dynorphin A-17, and possibly other peptides, at single Arg residues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: PC12 cells, a rat pheochromocytoma cell line, have been found to express carboxypeptidase E (CPE) enzymatic activity and CPE, furin, and peptidylglycine α-amidating monooxygenase (PAM) mRNAs. PC12 cells secrete CPE activity in response to depolarization induced by 50 mM KCl. Short-term (1- to 3-h) treatments of PC12 cells with KCl stimulates the secretion of CPE but does not appear to stimulate the synthesis of new CPE protein, based on the measurement of CPE activity and incorporation of [35S]-Met into CPE. Also, CPE mRNA is not altered by 2-h treatments with KCl. In contrast, prolonged treatment (24–48 h) of PC12 cells with 50 mM KCl continues to stimulate the secretion of CPE activity, without altering the cellular level of CPE. Levels of CPE mRNA are significantly elevated after long-term treatment of the cells with KCl, with increases of 35% after 5 h and 55–75% after 24 to 72 h of treatment. The level of PAM mRNA is also elevated approximately 70% after 24 h of stimulation with KCl. In contrast, the mRNA levels of furin and dopamine β-hydroxylase (DBH) do not change on treatment of PC12 cells with KCl. These findings indicate that long-term depolarization, which leads to a prolonged stimulation of PC12 cells to secrete CPE, also stimulates the synthesis of CPE and PAM but not furin of DBH.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Cultured astrocytes have recently been shown to produce certain neuropeptides, as well as neuropeptide processing enzymes. To characterize the secretory pathway in cultured astrocytes, we used the neuropeptide processing enzyme carboxypeptidase E (CPE) as a marker for neuropeptide secretion. Cultured astrocytes and AtT-20 cells, a mouse pituitary-derived neuroendocrine cell line, were labeled with [35S]Met for 15 min and then chased with unlabeled Met. CPE was isolated from either medium or cell extracts using a substrate affinity column. The time course of secretion of radiolabeled CPE was significantly different for cultured astrocytes as compared with AtT-20 cells. CPE was rapidly secreted from the astrocytes after a 30-min lag time, presumably reflecting transport through the endoplasmic reticulum and Golgi apparatus, followed by constitutive secretion. The secretion of radiolabeled CPE was essentially complete by 2 h. In contrast, only a portion of the radiolabeled CPE was secreted from AtT-20 cells over a 2–3-h period, indicating that the majority of newly synthesized CPE is stored, presumably in secretory granules within the AtT-20 cells. The regulation of CPE secretion from astrocytes was also examined. CPE secretion is stimulated two- to threefold by prolonged treatment (3–48 h) with the phorbol ester 12-O-tetra-decanoylphorbol 13-acetate (TPA) but not by treatment with other secretagogues that stimulate CPE secretion from AtT-20 cells (forskolin, isoproterenol, A23187, and vasoactive intestinal peptide) or short (〈3 h) exposure to TPA. Taken together, these results indicate that the secretory pathway for CPE, and presumably neuropeptides, is substantially different in astrocytes than the secretory pathway for CPE in neuroendocrine cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 61 (1993), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Carboxypeptidase E (CPE) functions in the posttranslational processing of peptide hormones and neurotransmitters. Like other peptide processing enzymes, CPE is present in secretory granules in soluble and membrane-associated forms that arise from posttranslational processing of a single precursor, “proCPE.” To identify the intracellular site of proCPE processing, the biosynthesis and posttranslational processing were investigated in the mouse anterior pituitary-derived cell line, AtT-20. Following a 15-min pulse with [35S]Met, both soluble and membrane-bound forms of CPE were identified, indicating that the posttranslational processing event that generates these forms of CPE occurs in the endoplasmic reticulum or early Golgi apparatus. The relative proportion of soluble and membrane-bound forms of CPE changed when cells were chased for 2 h at 37°C but was unaffected when cells were chased at either 20 or 15°C, suggesting that further processing of membrane forms to the soluble form occurs in a post-Golgi compartment. Treatment of the cells with chloroquine did not alter the relative distribution of soluble and membrane forms, suggesting that an acidic compartment is not required for this processing event. Overexpression of CPE did not influence the distribution of soluble and membrane forms of CPE, indicating that the CPE-processing enzymes are not rate-limiting. To examine directly CPE-processing enzymes, bovine anterior pituitary secretory vesicles were isolated. An enzyme activity that releases the membrane-bound form of CPE was detected in the purified secretory vesicle membranes. This enzyme, which removes the C-terminal region of CPE, is partially inhibited by EDTA and phenylmethylsulfonyl fluoride and is activated by CaCI2. Together, the data indicate that posttranslational processing of CPE occurs in secretory granules and that this activity may be mediated by a prohormone convertase-like enzyme.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The biosynthesis of neuroendocrine peptides is typically examined by following the rate of appearance of a radioactive amino acid into mature forms of peptides. In the present study, we labeled cell lines with l-leucine containing 10 deuterium residues (d10-Leu) and used mass spectrometry to measure the biosynthetic rate of γ-lipotropin in the AtT-20 cell line and insulin in the INS-1 cell line. After 3 h of labeling, both peptides show detectable levels of the d-labeled form in the cells and media. The relative levels of the d-labeled forms are greater in the media than in the cells, consistent with previous studies that found that newly synthesized peptides are secreted at a higher rate than older peptides under basal conditions. When AtT-20 cells were stimulated with KCl or forskolin, the ratio of d- to H-labeled γ-lipotropin in the medium decreased, suggesting that the older peptide was in a compartment that could be released upon the appropriate stimulation. Overexpression of proSAAS in AtT-20 cells reduced the ratio of d- to H-labeled γ-lipotropin, consistent with the proposed role of proSAAS as an endogenous inhibitor of prohormone convertase-1. Labeling with d10-Leu was also used to test whether altering the pH of the secretory pathway with chloroquine affected the rate of peptide biosynthesis. In AtT-20 cells, 30 µm chloroquine for 3 or 6 h significantly reduced the rate of formation of γ-lipotropin in both cells and media. Similarly, INS-1 cells treated with 10, 30, or 60 µm chloroquine for 6 h showed a significant decrease in the rate of formation of insulin in both cells and media. These results are consistent with the acidic pH optima for peptide processing enzymes. Stable isotopic labeling with d10-Leu provides a sensitive method to examine the rate of peptide formation in neuroendocrine cell lines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 42 (1984), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Enkephalin convertase, the enkephalin-synthe-sizing carboxypeptidase B-like enzyme, has been purified to apparent homogeneity from bovine pituitary and adrenal chromaffin granule membranes. The membrane-bound enkephalin convertase can be solubilized in high yield with 0.5% Triton X-100 in the presence of 1 M NaCl. Extensive purification is achieved by affinity chromatog-raphy with p-aminobenzoyl-L-arginine linked to Sepha-rose 6B. Enzyme purified from both pituitary and adrenal chromaffin granule membranes shows a single band by sodium dodecyl sulfate polyacrylamide gel electrophoresis with an apparent molecular weight of 52,500, whereas enkephalin convertase purified from soluble extracts of these tissues has an apparent molecular weight of 50,000. The regional distribution of the membrane-bound enzyme in the rat brain differs from that of the soluble enzyme. While the soluble enzyme shows 10-fold variations, resembling somewhat the enkephalin peptides, membrane-bound enkephalin convertase is more homogeneously distributed throughout the brain. In rat pituitary glands, membrane-bound enzyme activity is similar in the anterior and posterior lobes, whereas the soluble enzyme is enriched in the anterior lobe. Membrane-bound and soluble forms of enkephalin convertase isolated from either bovine pituitary glands or adrenal chromaffin granules show identical substrate and inhibitor specificities. As with the soluble enzyme, membrane-bound enkephalin convertase hydrolyzes [Met]- and [Leu]enkephalin-Arg6 and -Lys6 to enkephalin, with no further degradation of the pentapeptide.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Mice homozygous for the fat mutation develop obesity and hyperglycaemia that can be suppressed by treatment with exogenous insulin. The fat mutation maps to mouse chromosome 8, very close to the gene for carboxypeptidase E (Cpe), which encodes an enzyme (CPE) that processes prohormone intermediates ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 323 (1986), S. 461-464 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] CPE was purified to homogeneity from bovine pituitaries as described previously6. The amino-acid sequence of the amino-terminus of CPE was determined by gas-liquid sequencing7 of 200 jjig of purified enzyme. Both the soluble and the membrane-bound forms of CPE were found to have the same ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 38 (1988), S. 279-289 
    ISSN: 0730-2312
    Keywords: enkephalin convertase ; carboxypeptidase H ; carboxypeptidase B-like ; neuropeptide biosynthesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Carboxypeptidase E (CPE) is a Carboxypeptidase B-like enzyme that is thought to be involved in the processing of peptide hormones and neurotransmitters. Soluble and membrane-associated forms of CPE have been observed in purified secretory granules from various hormone-producing tissues. In this report, the influence of membrane association on CPE activity has been examined. A substantial amount of the membrane-associated CPE activity is solubilized upon extraction of bovine pituitary membranes with either 100 mM sodium acetate buffer (pH 5.6) containing 0.5% Triton X-100 and 1 M NaCl, or by extraction with high pH buffers (pH 〉 8). These treatments also lead to a two- to threefold increase in CPE activity. CPE extracted from membranes with either NaCl/Triton X-100 or high pH buffers hydrolyzes the dansyl-Phe-Ala-Arg substrate with a lower Km than the membrane-associated CPE. The Vmax of CPE present in extracts and membrane fractions after the NaCl/Triton X-100 treatment is twofold higher than in untreated membranes. Treatment of membranes with high pH buffers does not affect the Vmax of CPE in the soluble and particulate fractions. Pretreatment of membranes with bromoacetyl-D-arginine, an active site-directed irreversible inhibitor of CPE, blocks the activation by NaCl/Triton X-100 treatment. Thus the increase in CPE activity upon extraction from membranes is probably not because of the conversion of an inactive form to an active one, but is the result of changes in the conformation of the enzyme that effect the catalytic activity.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...