Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Two biochemical deficits have been described in the substantia nigra in Parkinson's disease, decreased activity of mitochondrial complex I and reduced proteasomal activity. We analysed interactions between these deficits in primary mesencephalic cultures. Proteasome inhibitors (epoxomicin, MG132) exacerbated the toxicity of complex I inhibitors [rotenone, 1-methyl-4-phenylpyridinium (MPP+)] and of the toxic dopamine analogue 6-hydroxydopamine, but not of inhibitors of mitochondrial complex II–V or excitotoxins [N-methyl-d-aspartate (NMDA), kainate]. Rotenone and MPP+ increased free radicals and reduced proteasomal activity via adenosine triphosphate (ATP) depletion. 6-hydroxydopamine also increased free radicals, but did not affect ATP levels and increased proteasomal activity, presumably in response to oxidative damage. Proteasome inhibition potentiated the toxicity of rotenone, MPP+ and 6-hydroxydopamine at concentrations at which they increased free radical levels ≥ 40% above baseline, exceeding the cellular capacity to detoxify oxidized proteins reduced by proteasome inhibition, and also exacerbated ATP depletion caused by complex I inhibition. Consistently, both free radical scavenging and stimulation of ATP production by glucose supplementation protected against the synergistic toxicity. In summary, proteasome inhibition increases neuronal vulnerability to normally subtoxic levels of free radicals and amplifies energy depletion following complex I inhibition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular biology reports 24 (1997), S. 45-50 
    ISSN: 1573-4978
    Keywords: aging ; heat shock protein 90 ; multicatalytic proteinase ; oxidative damage ; proteasome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Increases of oxidatively modified protein in the cell have been associated with the aging process. Such an accumulation of damaged protein may be the result of increase in the rate of protein oxidation and/or decrease in the rate of degradation of oxidized protein. The multicatalytic proteinase or proteasome is known to be the major proteolytic system involved in the removal of oxidized protein. We have reported that, after isolation of the 20S proteasome from the liver of young and old male Fischer 344 rat, out of the three peptidase activities (chymotrypsin-like, trypsin-like and peptidyl-glutamyl peptide hydrolase) we assayed with fluorogenic peptides, the peptidyl-glutamyl peptide hydrolase activity was declining with age to a value approximately 50% of that observed for protease purified from young rats. The proteasome was subjected to metal catalyzed oxidation to determine the susceptibility of the different peptidase activities to oxidative inactivation. Both trypsin-like and peptidyl-glutamyl peptide hydrolase activities were found sensitive to oxidation. Treatment of the proteasome with 4-hydroxy-2-nonenal, a major lipid peroxidation product, was also found to inactivate the trypsin-like activity. However, the trypsin-like activity was protected from inactivation by metal catalyzed oxidation in proteasome preparations contaminated with HSP 90, a protein that often copurifies with the proteasome. Upon addition of HSP 90 to pure 20S active proteasome, the trypsin-like activity was protected from inactivation by metal catalyzed oxidation and from inactivation by treatment with 4-hydroxy-2-nonenal. These results suggest a possible intervention of HSP 90 in response to oxidative stress in preventing the inactivation of the proteasome by oxidative damage. Abbreviations: AAF-amc – Ala-Ala-Phe-7-amido-4-methylcoumarin; LSTR-amc – N-t-Boc-Leu-Ser-Thr-Arg-7-amido-4-methylcoumarin; LLE-na – Leu-Leu-Glu-b-naphthylamide; HSP 90: heat shock protein 90, MCP – multicatalytic proteinase or 20S proteasome.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...