Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Plant Physiology and Plant Molecular Biology 46 (1995), S. 419-444 
    ISSN: 1040-2519
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 17 (1994), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Since 1980, the use of transgenic plants in modern plant science has become a powerful tool to study whole plant physiology. In this review, we try to summarize the data obtained in the field of photoassimilate partitioning. Attempts to study sink-source interactions concern factors which might limit sink strength and source capacity. Transgenic plants have been used to manipulate the sucrose to starch ratio in order to produce plants with higher sucrose levels in their source leaves. Alterations in partitioning were achieved by manipulating Calvin cycle enzymes, transport proteins and sucrose biosynthetic enzymes. The ability of sink tissues to attract photoassimilates has been altered by either increasing or decreasing sucrose hydrolytic activities. The increase of sucrose hydrolysis was achieved by creating transgenic potato plants with tuber specific yeast-derived invertase. Decreased sucrose utilization was achieved by antisense inhibition of sucrose synthase in potato tubers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Plant, cell & environment 26 (2003), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In terrestrial higher plants, phloem transport delivers most nutrients required for growth and storage processes. Some 90% of plant biomass, transported as sugars and amino nitrogen (N) compounds in a bulk flow of solution, is propelled though the phloem by osmotically generated hydrostatic pressure differences between source (net nutrient export) and sink (net nutrient import) ends of phloem paths. Source loading and sink unloading of sugars, amino N compounds and potassium largely account for phloem sap osmotic concentrations and hence pressure differences. A symplasmic component is characteristic of most loading and unloading pathways which, in some circumstances, may be interrupted by an apoplasmic step. Raffinose series sugars appear to be loaded symplasmically. However, sucrose, and probably certain amino acids, are loaded into minor veins from source leaf apoplasms by proton symporters localized to plasma membranes of their sieve element/companion cell (se/cc) complexes. Sucrose transporters, with complementary kinetic properties, are conceived to function as membrane transporter complexes that respond to alterations in source/sink balance. In contrast, symplasmic unloading is common for many sink types. Intervention of an apoplasmic step, distal from importing phloem, is reserved for special situations. Effluxers that release sucrose and amino acids to the surrounding apoplasm in phloem loading and unloading are yet to be cloned. The physiological behaviour of effluxers is consistent with facilitated membrane transport that can be energy coupled. Roles of sucrose and amino acid transporters in phloem unloading remain to be discovered along with mechanisms regulating symplasmic transport. The latter is hypothesized to exert significant control over phloem unloading and, in some circumstances, phloem loading.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 22 (1999), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Acclimation of plants to an increase in atmospheric carbon dioxide concentration is a well described phenomenon. It is characterized by an increase in leaf carbohydrates and a degradation of ribulose 1, 5-bisphosphate carboxylase protein (Rubisco) leading in the long term to a lower rate of CO2 assimilation than expected from the kinetic constants of Rubisco. This article summarizes studies with transgenic plants grown in elevated pCO2 which are modified in their capacity of CO2 fixation, of sucrose and starch synthesis, of triosephosphate and sucrose transport and of sink metabolism of sucrose. These studies show that a feedback accumulation of carbohydrates in leaves play only a minor role in acclimation, because leaf starch synthesis functions as an efficient buffer for photoassimilates. There is some evidence that in elevated pCO2, plants grow faster and senescence is induced earlier.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 19 (1996), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In many plants, translocation of sucrose from mesnsophyll to phloem for long-distance transport is carrier-mediated. The sucrose H+-symporter gene SUT1 from potato is expressed at high levels in the phloem of mature, exporting leaves and at lower levels in other organs. Inhibition of SUT1 by expression of an antisense gene in companion cells under control of the rolC promoter leads to accumulation of high amounts of soluble and insoluble carbohydrates in leaves and inhibition of photosynthesis. The distribution of in situ localized starch does not correspond with areas of reduced photosynthesis as shown by fluorescence imaging. Dissection of antisense effects on sink and source organs by reciprocal grafts shows that inhibition of transporter gene expression in leaves is sufficient to produce chlorosis in leaves and reduced tuber yield. In contrast to the arrest of plasmodesmal development found in plants that express yeast invertase in the apoplast, in mature leaves of sucrose transporter antisense plants plasmodesmata are branched and have median cavities. These data strongly support an apoplastic mode of phloem loading in potato, in which the sucrose transporter located at the plasma membrane of the sieve element/companion cell complex represents the primary route for sugar uptake into the long-distance translocation pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 446 (2007), S. 195-198 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Polytopic membrane proteins are essential for cellular uptake and release of nutrients. To prevent toxic accumulation, rapid shut-off mechanisms are required. Here we show that the soluble cytosolic carboxy terminus of an oligomeric ammonium transporter from Arabidopsis thaliana serves as an ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The Working Party on Safety in Biotechnology of the European Federation of Biotechnology reported [Künzi M, et al. Safe Biotechnology (1) — General considerations. Appl Microbiol Biotechnol 21:1–6] on the classification of human pathogens and other microorganisms. It is proposed to relate the various risk classes of these organisms to the categories of physical containment for recombinant DNA (rDNA) organisms according to the OECD report [OECD Report (1986) “Recombinant DNA Safety Considerations”, Paris]. In view of the differences in the numbering systems of the EFB for risk classes (1–4) and the OECD system of Good Industrial Large Scale Practice (GILSP) and containment categories 1–3, the former have been given alternative names. Relationships of the EFB-Classification of Microorganisms according to risk and OECD safety precautions have been defined (Table 1).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The benefits of using animal or human cell cultures have been clearly demonstrated in diagnostic and therapeutic research and in their application for manufacturing. Cell cultures serve as a tools for the production of vaccines, receptors, enzymes, monoclonal antibodies and recombinant DNA-derived proteins. They represent an integral part of drug development for which corresponding facilities, equipment and manufacturing processes are required. Although the cells themselves offer no particular risk to workers in laboratories and production areas or to the environment, the cell cultures may be contaminated with viruses, mycoplasma, bacteria, yeast and fungi or might contain endogenous viruses. The containment level for animal and human cells is therefore determined by the risk class of these agents. The history of animal and human cell cultures has proved that they can be handled safely. The recommendations in this publication concern the safe handling of cell cultures (tissue explants, primary cell cultures) and permanent cell lines of animal and human origin. A classification system of safety precautions has been elaborated according to the potential for contamination with the pathogenic agents involved.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The Working Party on Safety in Biotechnology of the European Federation of Biotechnology has proposed a classification of microorganisms that cause diseases in plants. In this paper appropriate safety levels are proposed for these classes of microorganisms in order to ensure that research, development and industrial fermentation work with plant pathogens will limit the risk of outbreaks of diseases in crops that could result from work with such microorganisms when they are cultivated in laboratories, glasshouses and biotechnology installations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...