Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 21 (1977), S. 577-579 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 13 (1975), S. 775-786 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The relaxation modulus G(t) and the stress decay after cessation of steady shear flow were measured on concentrated solutions of polystyrenes in diethyl phthalate. Ranges of concentration c and molecular weight M of the polymer were from 0.112 to 0.329 g/ml and from 1.23 × 106 to 7.62 × 106, respectively. The relaxation spectrum H(τ) as calculated from G(t) for the solution of very high M was found to be composed of two parts. One, at relatively short times, was a broad distribution (plateau zone) with height proportional to c2. The second, at the long-time end, was very sensitive to concentration and gave rise to a maximum in H(τ) for very high concentrations. The behavior of H(τ) at long times was examined quantitatively by evaluating the longest relaxation time τ10 and the corresponding relaxation strength G10 from G(t) and from the stress decay function, on the assumption of a discrete distribution of relaxation times at long times. The longest relaxation time was approximately proportional to M3.5, even at relatively low concentrations where the zero-shear viscosity was not proportional to M3.5. The strengths of relaxation modes with the longest few relaxation times are proportional to the third power of concentration.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The development of the shear stress at the start of shear flow at constant rate of shear κ was measured for polystyrene solutions in diethyl phthalate with a cone-and-plate rheometer. Ranges of molecular weight M and concentration c were 3.10 × 106-7.62 × 106 and 0.112-0.329 g/cm3, respectively. The shear stress as a function of time t exhibited a marked maximum at large κ when either M or c was relatively low. When M and c were high, the maximum was broad and low. In a few extreme cases no maximum was observed in the range of κ studied. The constitutive model of Bernstein, Kearsley, and Zapas could describe approximately the shear stresses at a sudden start and on cessation of steady shear flow with a memory function evaluated from the strain-dependent relaxation modulus. The strain dependence of the memory function for solutions of low M or c was approximately expressed as exp{-α|s|} where α is a constant (ca. 0.37) and |s| is the absolute value of shear strain. When M and c were high, the strain dependence was found to be more diffuse and to require several terms if approximated by exponential functions of |s|. The Lodge model based on a strain-rate dependent relaxation spectrum was not able to describe the strain-dependent relaxation modulus as well as the interrelation between shear stresses at a sudden start and a cessation of steady shear flow.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 13 (1975), S. 1563-1576 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Strain-dependent relaxation moduli G(t,s) were measured for polystyrene solutions in diethyl phthalate with a relaxometer of the cone-and-plate type. Ranges of molecular weight M and concentration c were from 1.23 × 106 to 7.62 × 106 and 0.112 to 0.329 g/cm3. Measurements were performed at various magnitudes of shear s ranging from 0.055 to 27.2. The relaxation modulus G(t,s) always decreased with increasing s and the relative amount of decrease (i.e.,-log[G(t,s)/G(t,0)]) increased as t increased. However, the detailed strain dependences of G(t,s) could be classified into two types according to the M and c of the solution. When cM 〈 106, the plot of log G(t,s) versus log t varied from a convex curve to an S-shaped curve with increasing s. For solutions of cM 〉 106, the curves were still convex and S-shaped at very small and large s, respectively, but in a certain range of s (approximately 3 〈 s 〈 7) log G(t,s) decreased rapidly at short times and then very slowly; a peculiar inflection and a plateau appeared on the plot of log G(t,s) versus log t. The strain-dependent relaxation spectrum exhibited a trough at times corresponding to the plateau of log G(t,s). The longest relaxation time τ1(s) and the corresponding relaxation strength G1(s) were evaluated through the “Procedure X” of Tobolsky and Murakami. The relaxation time τ1(s) was independent of s for all the solutions studied while G1(s) decreased with s. The reduced relaxation strength G1(s)/G1(0) was a simple function of s (The plot of log G1(s)/G1(0) against log s was a convex curve) and was approximately independent of M and c in the range of cM 〈106. This behavior of G1(s)/G1(0) was in agreement with that observed for a polyisobutylene solution and seems to have wide applicability to many polymeric systems. On the other hand, log G1(s)/G1(0) as a function of log s decreased in two steps and decreased more rapidly when M or c was higher. It was suggested that in the range of cM 〈 106, a kind of geometrical factor might be responsible for a large part of the nonlinear behavior, while in the range of cM 〉 106, some “intrinsic” nonlinearity of the entanglement network system might be important.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 13 (1975), S. 1577-1589 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The steady shear viscosity η(k) and the stress decay function \documentclass{article}\pagestyle{empty}\begin{document}$ \tilde \eta \left({t,k} \right)$\end{document} (the shear stress divided by the rate of shear k after cessation of steady shear flow) were measured for concentrated solutions of polystyrene in diethyl phthalate. Ranges of molecular weight M and concentration c were 7.10 × 105 to 7.62 × 106 and 0.112-0.329 g/cm3, respectively. Measurements were performed with a rheometer of the cone-and-plate type in the range 10-4 〈 k 〈 1 sec-1. The Cox-Merz relation η(k) = |η*(ω)|ω=k was tested with the experimental result (|*(ω)| is the magnitude of the complex viscosity). It was found to be applicable to solutions of relatively low M or c but not to those of high M and c. For the latter η(k) began to decrease at a lower rate of shear than |η*(ω)|ω=k did; the Cox-Merz law underestimated the effect of rate of shear. The stress decay function was assumed to have a functional form \documentclass{article}\pagestyle{empty}\begin{document}$\tilde \eta \left( {t,k} \right) = \sum {\eta _p \left( k \right)e^{ - t/\tau p\left( k \right)} } $\end{document} where τ1 〉 τ2 〉 …, and the values of τ1, τ2 η1 and η2 were determined for some solutions. The relaxation times τ1 and τ2 were found to be independent of k and equal to the relaxation times of linear viscoelasticity. At the limit of k → 0, η1 and η2 were approximately 60 and 20-30%, respectively, of η and the non-Newtonian behavior was due to large decreases of η1 and η2 with increasing k. It was shown that η1(k) may be evaluated from the relaxation strength G1(s) for the longest relaxation time of the strain-dependent relaxation modulus with a constitutive model for relatively high c-M systems as well as for low c-M systems.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 12 (1974), S. 871-890 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A series of polystyrenes with weight-average molecular weight M̄w up to 1.3 × 107 was prepared by anionic polymerization in tetrahydrofuran (THF). Each sample was characterized by gel-permeation chromatography, light scattering, and viscometry. It was found that each sample had an almost symmetrical and very narrow molecular weight distribution (M̄w/M̄n 〈 1.07). The mean-square unperturbed radius of gyration 〈S2〉0 was determined in trans-decalin at 20.4°C as 〈S2〉0 = 7.86 × 10-18M̄w (cm2). The particle scattering factor was well represented by the Debye equation irrespective of solvent in the range of M̄w 〈 4 × 106, and only a small deviation was observed in benzene at higher molecular weights. The penetration function Ψ ≡ A2M2/4π3/2NA〈S〉23/2 was found to approach a relatively low asymptotic value of 0.21-0.23 at molecular weights above 2 × 106 in benzene at 30°C, where A2 is the second virial coefficient and NA is Avogrado's number. It was also found that the theta temperature in trans-decalin was affected by the nature of polymer samples. A difference of about 3°C in the theta temperature was observed between two series of anionic polystyrenes, one prepared in THF and the other in benzene, but there was practically no difference in unperturbed chain dimension.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...