Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 127 (1986), S. 439-447 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The water in unfertilized and fertilized sea urchin eggs was characterized with a proton nuclear magnetic resonance (NMR) titration method assuming fast proton diffusion (FPD) between water compartments. This method involves stepwise dehydration with sequential T1 relaxation time and water content determinations. The results analyzed by the FPD model give evidence of intracellular water compartments with three different correlation times: 6 × 10-12 sec (bulk water), 1 × 10-10 sec (structured water) and about 2 × 10-9 sec (bound water). Fertilization is accompanied by a substantial increase in bulk water (from 111 to 414 g H2O per 100 g dry mass) and by a decrease in the water of hydration (from 128 g to 56 g per 100 g dry mass). This study shows that 54% of the water in the unfertilized sea urchin egg has motional properties different from bulk water and that this percentage decreases dramatically shortly after fertilization. Most of the change in T1 relaxation rate observed at fertilization can be accounted for by uptake of bulk water associated with elevation of the fertilization membrane.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 142 (1990), S. 592-602 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Experiments were done on fully grown Xenopus oocytes to determine the extent and the properties of cellular water of hydration. The studies involved the osmotic shrinking and swelling of the oocytes under known osmotic pressure as well as proton NMR spectral, titration, and free induction decay analyses. Studies were done both on whole oocytes and on subcellular fractions. The results show that little if any of the oocyte water in situ has the motional or osmotic properties expected of pure "bulk" water. Four distinct water of hydration compartments were found and defined on the basis of distinct hydrogen bounding mechanisms. Some of the water in yolk platelets was found not to be in fast exchange with other water compartments. Osmotic shrinkage of oocytes caused an adaptive decrease in the bound water of hydration compartments. This osmotically induced decrease is attributed to decreased surface area available for the hydrogen bounding of water molecules on cellular proteins.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 149 (1991), S. 365-374 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Is an intact plasma membrane responsible for keeping hemoglobin and water within the human erythrocyte? If not, what is responsible? How free is Hb to move about within the erythrocyte? To answer these questions erythrocytes were taken for phase contrast microscopy, transmission electron microscopy (TEM), determination of water-holding capacity, and proton NMR studies both before and after membrane disruption with a nonionic detergent (Brij 58). Addition of 0.2% Brij to a D2O saline solution of hemoglobin (Hb) caused particles of Hb to appear and to aggregate. This aggregation of Hb caused the amplitude of the Hb proton NMR spectra to decrease. Thus, the less mobile the Hb the lower the Hb proton spectra amplitude. Erythrocytes washed in D2O saline showed proton NMR spectra of relatively low amplitude. Addition of Brij (0.2%) to these erythrocytes caused increased Hb mobility within these erythrocytes. The TEM of fixed and thin-sectioned erythrocytes treated with Brij showed disruption of the plasma membrane of all erythrocytes regardless of whether or not they had lost Hb. Brij-permeabilized erythrocytes washed in D2O saline or in a D2O K buffer maintained a higher heavy water-holding capacity upon centrifugation as compared to nonpermeabilized erythrocytes. The TEM of Brij-treated and washed erythrocyte “shells” revealed a continuous submembrane lamina but no other evidence of cytoskeletal elements. The water-holding capacity of the erythrocyte can be accounted for by the water-holding capacity of hemoglobin. The evidence favors a relatively immobile state of Hb and of water in the erythrocyte that is not immediately dependent on an intact plasma membrane but is attributed to interactions between Hb molecules and the submembrane lamina.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...