Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature America Inc.
    Nature genetics 23 (1999), S. 377-378 
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] There we were, sixteen students and eight full- or part-time instructors in a not-quite-finished empty building. Over the course of two weeks*, we were going to build four microarrayers from parts in boxes, amplify all 6,000 yeast genes using the polymerase chain reaction (PCR), use the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] There are about 800 genes in Saccharomyces cerevisiae whose transcription is cell-cycle regulated. Some of these form clusters of co-regulated genes. The ‘CLB2’ cluster contains 33 genes whose transcription peaks early in mitosis, including CLB1, CLB2, SWI5, ACE2, CDC5, CDC20 ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In most eukaryotes, commitment to cell division occurs in late G1 phase at an event called Start in the yeast Saccharomyces cerevisiae, and called the restriction point in mammalian cells. Start is triggered by the cyclin-dependent kinase Cdc28 and threerate-limiting activators, the G1 cyclins ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 371 (1994), S. 342-345 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Addition of glucose to cells growing in raffinose caused a severe but temporary drop in CLN1 messenger RNA and protein levels (Fig. 1), and also in the histone HI kinase activity associated with Clnl (data not shown). Budding and analysis by fluorescence-activated cell sorting (FACS) ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 373 (1995), S. 78-81 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] On the basis of its sequence similarity to known ubiquitin-conjugating (UBC) enzymes catalysing the covalent attachment of ubiquitin to proteolytic substrates9, we identified the UBC9 gene encoding a novel member of this enyme family from Sacc-haromyces cerevisiae. Interrupted by a single intron, ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Methods in cell science 21 (1999), S. 79-86 
    ISSN: 1573-0603
    Keywords: Block and release ; cdc15 ; Cell cycle ; Elutriation ; Synchronization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The yeast Saccharomyces cerevisiae has been an excellent model system for cell cycle studies. Many such studies require cells synchronized in some particular portion of the cell cycle. Here, methods are described for obtaining and examining synchronized cells as they pass through one or more rounds of the cell cycle. The methods are of two types. First, block-and-release methods, where cells are initially synchronized by blocking them at some particular cell cycle stage, then releasing them from the block under conditions suitable for growth, and taking samples at different times after the release, thereby obtaining samples representing different cell cycle stages. The second type of method is elutriation. Centrifugal elutriation can be used to obtain samples of uniformly sized cells, and because cell size is correlated with cell cycle stage, these cells are synchronized with respect to their position in the cycle. Because elutriation is a very different method from block- and-release, it is ideal as a second method of synchronization to ensure that results achieved by block-and-release are not artefactual. Here, block-and-release experiments with the mating pheromone alpha factor, and with the cdc15-2 mutation, are described in detail, as are some elutriation methods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0173-0835
    Keywords: Yeast ; Two-dimensional polyacrylamide gel electrophoresis ; Proteome ; Database ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Two-dimensional (2-D) gel electrophoresis can now be coupled with protein identification techniques and genome sequence information for direct detection, identification, and characterization of large numbers of proteins from microbial organisms. 2-D electrophoresis, and new protein identification techniques such as amino acid composition, are proteome research techniques in that they allow direct characterization of many proteins at the same time. Another new tool important for yeast proteome research is the Yeast Protein Database (YPD), which provides the sequence-derived protein properties needed for spot identification and tabulations of the currently known properties of the yeast proteins. Studies presented here extend the yeast 2-D protein map to 169 identified spots based upon the recent completion of the yeast genome sequence, and they show that methods of spot identification based on predicted isoelectric point, predicted molecular mass, and determination of partial amino acid composition from radiolabeled gels are powerful enough for the identification of at least 80% of the spots representing abundant proteins. Comparison of proteins predicted by YPD to be detectable on 2-D gels based on calculated molecular mass, isoelectric point and codon bias (a predictor of abundance) with proteins identified in this study suggests that many glycoproteins and integral membrane proteins are missing from the 2-D gel patterns. Using the 2-D gel map and the information available in YDP, 2-D gel experiments were analyzed to characterize the yeast proteins associated with: (i) an environmental change (heat shock), (ii) a temperature-sensitive mutation (the prp2 mRNA splicing mutant), (iii) a mutation affecting post-translational modification (N-terminal acetylation), and (iv) a purified subcellular fraction (the ribosomal proteins). The methods used here should allow future extension of these studies to many more proteins of the yeast proteome.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 9 (1993), S. 33-42 
    ISSN: 0749-503X
    Keywords: Heat shock ; stress response ; cell cycle ; Saccharomyces cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Rapidly growing cells of Saccharomyces cerevisiae are sensitive to heat shock, while non-growing stationary phase cells are highly resistant. We find that slowly growing cells have an intermediate degree of heat shock resistance that can be nearly as great as that of stationary phase cells. This resistance is correlated both with slow growth and with carbon catabolite derepression. Slowly growing cells also showed resistance to Zymolyase digestion of their cell walls. The stress resistance is a property of all the cells in the culture, and cell cycle position makes little difference to the degree of stress resistance. At least some of the properties normally associated with stationary phase cells do not require residence in stationary phase or any other particular compartment of the cell cycle. Stress resistance may be due to a diverse set of physiological adaptations available to cells regardless of their position in the cell cycle. That is, although stress resistance and stationary phase are often correlated, neither is the cause of the other.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 12 (1996), S. 1635-1646 
    ISSN: 0749-503X
    Keywords: Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: No Abstract
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0173-0835
    Keywords: World-Wide Web ; Computers ; Two-dimensional polyacrylamide gel electrophoresis ; Yeast ; Saccharomyces cerevisiae ; Protein database ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: The QUEST Protein Database Center is now making available two Saccharomyces cerevisiae protein databases via the Internet. The yeast electrophoretic protein database (YEPD) is a database of approximately one hundred protein identifications on two-dimensional gels. The yeast protein database (YPD) is a database of gene names and properties of over 3500 yeast proteins of known sequence. These databases can be accessed via a World-Wide Web (WWW) server (http://siva.cshl.org). YPD is available via public ftp (isis.cshl.org) as well, in a spreadsheet format, and in ASCII format. When accessed via WWW, both of these databases have hypertext links to other biological data, such as the SWISS-PROT protein sequence database and the Saccharomyces Genome Database (SacchDB), and to each other.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...