Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1600-0757
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Tumor cells often display alterations in their normal program of cellular differentiation. A promising approach for the treatment of cancer involves the induction of terminal differentiation and a loss of proliferative capacity in cancer cells. In human melanoma cells, the combination of mezerein (MEZ) and fibroblast interferon (IFN-β), results in a rapid and irreversible suppression of cell growth with a concomitant increase in the synthesis of melanin. The induction of terminal differentiation is associated with alterations in the expression of several cellular genes, including fibronectin, ISG-15 and ISG-54, and changes in the expression of specific cell surface antigens, including intercellular adhesion molecule-1 (ICAM-1) and HLA Class I antigens. In the HO-1 human melanoma cell line, induction of terminal differentiation by MEZ plus IFN-β results in an induction and/or increased expression of ICAM-1. HLA Class I antigens and HLA Class II antigens. IFN-β and MEZ alone can modulate expression of these antigens to a lower extent than does the combination of compounds. Induction of terminal differentiation and the irreversible suppression of cell growth is not a prerequisite for antigenic modulation in HO-1 cells. This is indicated by the inability of immune interferon (IFN-γ), a strong inducer of ICAM-1, HLA Class I antigens and HLA Class II antigens synthesis, or the combination of IFN-β plus IFN-γ which synergistically but reversibly suppresses HO-1 growth. to induce melanin synthesis or terminal differentiation in HO-1 cells. The inhibitor of protein kinase C, H-7, only marginally alters 72 hr growth suppression induced by MEZ or the interferons, used alone or in combination. In several experiments, H-7 only partially and variably inhibited the enhanced expression of ICAM-1, HLA Class I antigens and HLA Class II antigens in HO-1 cells treated with MEZ. IFN-β or IFN-γ, used alone or in various combinations. This model system will be useful in defining the biochemical, genomic and antigenic changes associated with the chemical induction of terminal differentiation and the loss of proliferative capacity in human melanoma cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 567 (1989), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0851
    Keywords: Human melanoma cells ; Recombinant interferons ; Growth suppression ; Differentiation ; Antigenic phenotype
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Administration of interferon as a single therapeutic regimen in cancer patients with various neoplasias has had only limited efficacy in ameliorating the negative clinical course of their disease. In the present study, we have evaluated the effect of recombinant human fibroblast (IFNβ) and immune (IFNγ) interferon, alone and in combination, on growth, differentiation and the expression of class I and II histocompatibility locus antigens (HLA) and melanoma-associated antigens on the human melanoma cell line H0-1. The effect of combinations of interferons on the antigenic profile of human melanoma cells displaying different organ colonization and spontaneous metastatic potential in athymic nude mice was also determined. H0-1 cells were more sensitive to the antiproliferative activity of IFNβ than to IFNγ and the combination of interferons resulted in a potentiation of growth suppression. The antiproliferative effect of both interferons was greater in later-passage than in earlier-passage H0-1 cells, possibly reflecting alterations in the evolving tumor cell population as a result of long-term in vitro propagation and/or the selective outgrowth of cells with an increased growth rate. The enhanced growth suppression observed in H0-1 cells treated with the combination of IFNβ plus IFNγ was not associated with a significant increase in the level of melanin, a marker of melanoma differentiation, above that observed with either interferon used alone. IFNβ and IFNγ differentially modulated the expression of class I and II HLA and melanoma-associated antigens in H0-1 cells and a series of melanoma cells with different organ colonization and metastatic potential, including MeWo, MeM 50-10, MeM 50-17, 3S5 and 70W. No consistent potentiation or antagonism in the expression of any specific antigen was observed in any of the melanoma cell lines exposed to the combination of interferons. The present study demonstrates that the combination of IFNβ plus IFNγ can potentiate growth suppression in H0-1 human melanoma cells and that this effect is not associated with an increase in differentiation or a potentiation in antigenic modulation. In addition, no direct correlation between the expression of any specific antigen or its modulation by IFNβ or IFNγ, alone or in combination, and organ colonization and metastatic potential in nude mice was observed in the different melanoma cell lines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0851
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Malignant transformation of melanocytes may be associated with changes in the expression of HLA antigens and melanoma-associated antigens (MAA). To determine whether these changes reflect the differential expression of HLA antigens and MAA by melanocytes at different stages of differentiation, we have studied the effect of the reversible induction of differentiation by fibroblast interferon (interferon β) and/or 12-O-tetradecanoyl-phorbol 13-acetate (TPA) on the expression of HLA antigens and MAA by the melanoma cell lines DU-2, FO-1 and HO-1. The three melanoma cell lines differed in their sensitivity to the differentiating and antiproliferative activity of these two compounds and displayed an increased growth suppression and induction of differentiation, when incubated with the combination of TPA and interferon β. Incubation of the three melanoma cell lines with interferon β, TPA or their combination resulted in a differential modulation of the expression of membrane-bound high-molecular-mass melanoma-associated antigen, 115-kDa MAA, 100-kDa MAA, intercellular adhesion molecule 1, HLA class I antigens and gene products of the HLA-D region. Each melanoma cell line displayed a unique pattern of antigenic modulation when exposed to the two differentiating agents alone or in combination. No direct relationship was found between the effects of interferon β and/or TPA on the growth and differentiation of the three melanoma cell lines and the expression of HLA antigens or the MAA evaluated in the present study. These findings argue against a direct role of any of the antigens tested in the reversible induction of human melanoma cell differentiation in the in vitro system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...