Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 60 (1985), S. 559-563 
    ISSN: 1432-1106
    Keywords: Cat ; Visual cortex ; Multiunit recordings ; Response variance ; Response covariance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The activity of pairs of neurons in the visual cortex (area 17) of anaesthetized, paralysed cats was recorded using two independently manipulated micropipettes. The number of spikes in the evoked responses of pairs of single neurons were analyzed for response covariance. Responses of the majority of cell pairs (83%) did not covary. Covariance was restricted to closeby neurons with distances of less than 150 μm and with identical orientation and ocular dominance preference.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 77 (1989), S. 398-406 
    ISSN: 1432-1106
    Keywords: Orientation discrimination ; Visual cortex ; Variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Responses of visual cortex (area 17) neurons to moving oriented stimuli were recorded from anesthetized cats. The variance of response (SD2) to repeated identical stimuli was directly proportional to response magnitude (R), (SD2 =C2R). The values of C were not found to differ significantly between different types of cortical cells. The relationship predicts that the coefficient of variation (SD/R) will be smallest near the peak of the tuning curve, indicating that the peak response is most reliable for detecting an orientation but not necessarily the most sensitive to a change in orientation. Tuning curves and response variability were then examined to determine the orientation at which the neuron was most sensitive to changes in stimulus orientation using signal detection theory. The discrimination index (d′ = [R1-R2J/SD) for a 1 degree change in stimulus orientation was greatest along the flanks of the tuning curve. In order to generalize the experimental data, response distributions derived from a model of cells with parameters based on experimental data were examined to determine the minimal discriminable change in stimulus orientation. Changes of stimulus orientation between 0.6 and 5 deg of arc could be detected from single responses of a single cell by an optimal observer with 75% accuracy if the orientation change was centered at the most sensitive part of the tuning curve.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...