Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 58 (1996), S. 17-23 
    ISSN: 1432-0827
    Keywords: Key words: Turkey tendon — Hydroxyapatite — mineral orientation — FT-IR microscopy.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. Fourier transform infrared microscopy (FT-IRMS) was used to monitor spatial variations in the quality and quantity of the mineral phase in calcified turkey tendon. Spectral maps were generated by analysis of 50 μm ×~ 50 μm areas within different regions of the tendon. Spectra of the transitional region, where nonmineralized matrix ends and mineralized matrix begins, revealed marked changes in the spectrally determined mineral-to-matrix ratio, whereas regions deeper into the mineralization front showed a relatively constant ratio. Since spectra of EDTA-demineralized matrix were similar to those of nonmineralized matrix, the nonmineralized regions of the tendon were used for spectral subtraction. The broad, relatively featureless contour of the mineral ν1,ν3 phosphate region (900–1200 cm−1) showed only subtle changes at different stages of mineralization. Second derivatives of these spectra were calculated and compared with those of synthetic, poorly crystalline hydroxyapatite (HA). The peak positions seen in second-derivative spectra of the mineral near the transitional region were within ±2 cm−1 of the least mature synthetic HAs whereas spectra of the mineral deeper into the mineralization front were within ±2 cm−1 of the most mature synthetic HAs. Spectra from cross- and longitudinal sections at equivalent positions in the tendon, and polarized FT-IRMS data were analyzed to determine the effect of mineral orientation on the parameters used to characterize the mineral. Spectra of cross- and longitudinal sections of the tendon showed no major differences in either the ν1,ν3 phosphate region or the amide I, II, or III components (1200–1800 cm−1). However, polarized FT-IR spectra revealed dramatic differences in both of these regions. Despite these differences, second-derivative analysis of the ν1,ν3 regions revealed no significant changes in the positions of the underlying bands used to characterize the environments of the phosphate ion in poorly crystalline HA. The results of this study demonstrate the power of FT-IRMS to monitor spatial variations of the mineral phase in calcified tissue. Also, the incorporation of polarized radiation provides a method capable of assessing the molecular orientation of the mineral phase relative to the collagen matrix.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0827
    Keywords: Key words: FT-IR spectroscopy — Hydroxyapatite — Second-derivative spectroscopy — X-ray diffraction — Phosphate species.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. Fourier Transform infrared spectroscopic analysis of maturing, poorly crystalline hydroxyapatite (HA) formed from the conversion of amorphous calcium phosphate (ACP) at constant pH or variable pH show only subtle changes in the ν1, ν3 phosphate absorption region (900 cm−1–1200 cm−1). This region is of interest because it can be detected by analysis of mineralized tissue sections using FT-IR microscopy. To evaluate the subtle spectral changes occurring during the maturation, second derivatives of the spectra were calculated. HA formed at constant pH showed little or no variation in the second derivative peak positions with bands occurring at 960 cm−1, 985 cm−1, 1030 cm−1, 1055 cm−1,, 1075 cm−1, 1096 cm−1, 1116 cm−1, and 1145 cm−1. These bands can be assigned to molecular vibrations of the phosphate (PO4 3−) moiety in an apatitic/stoichiometric environment of HA. In contrast, during the early stages of maturation of the HA formed at variable pH, second derivative peak positions occurring at 958 cm−1, 985 cm−1, 1020 cm−1, 1038 cm−1, 1112 cm−1, and 1127 cm−1 shifted in position with maturation, indicating that the environment of the phosphate species is changing as the crystals mature. Peaks at 1020 cm−1, 1038 cm−1, 1112 cm−1, and 1127 cm−1 were attributable to nonstoichiometry and/or the presence of acid phosphate-containing species. This concept was supported by the lower Ca:P molar ratios measured by chemical analysis of the synthetic material made at variable pH. Using the second derivative peak positions as initial input parameters, the ν1, ν3 phosphate region of the synthetic HAs prepared at constant pH were curve fit. X-ray diffraction patterns of these same materials were also curve fit to calculate the changes in crystallinty (size/perfection) in the c-axis 002 reflection as well as the 102, 210, 211, 112, 300, 202, and 301 planes. Linear regression analysis showed that the changes in the percent area of the underlying bands at 982 cm−1, 999 cm−1, 1030 cm−1, 1075 cm−1, 1096 cm−1, 1116 cm−1, and 1145 cm−1 were correlated with changes in crystallinity in one or more of the reflection planes. It is suggested that a combination of second-derivative and curve-fitting analysis of the ν1, ν3 phosphate contour allows the most reproducible evaluation of these spectra.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...