Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 69 (1997), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The neurotoxic effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was tested on mice lacking the dopamine (DA) transporter (DAT−/− mice). Striatal tissue DA content and glial fibrillary acidic protein (GFAP) mRNA expression were assessed as markers of MPTP neurotoxicity. MPTP (30 mg/kg, s.c., b.i.d.) produced an 87% decrease in tissue DA levels and a 29-fold increase in the level of GFAP mRNA in the striatum of wild-type animals 48 h after administration. Conversely, there were no significant changes in either parameter in DAT−/− mice. Heterozygotes demonstrated partial sensitivity to MPTP administration as shown by an intermediate value (48%) of tissue DA loss. Direct intrastriatal infusion of the active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+; 10 mM), via a microdialysis probe produced a massive efflux of DA in wild-type mice (〉320-fold). In the DAT−/− mice the same treatment produced a much smaller increase in extracellular DA (sixfold), which is likely secondary to tissue damage due to the implantation of the dialysis probe. These observations show that the DAT is a mandatory component for expression of MPTP toxicity in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been proposed to be attenuated by sequestration into intracellular vesicles by the vesicular monoamine transporter (VMAT2). The purpose of this study was to determine if mice with genetically reduced levels of VMAT2 (heterozygote knockout; VMAT2 +/−) were more vulnerable to MPTP. Striatal dopamine (DA) content, the levels of DA transporter (DAT) protein, and the expression of glial fibrillary acidic protein (GFAP) mRNA, a marker of gliosis, were assessed as markers of MPTP neurotoxicity. In all parameters measured VMAT2 +/− mice were more sensitive than their wild-type littermates (VMAT2 +/+). Administration of MPTP (7.5, 15, or 30 mg/kg, b.i.d.) resulted in dose-dependent reductions in striatal DA levels in both VMAT2 +/− and VMAT2 +/+ animals, but the neurotoxic potency of MPTP was approximately doubled in the VMAT2 +/− mice: 59 versus 23% DA loss 7 days after 7.5 mg/kg dose for VMAT2 +/− and VMAT2 +/+ mice, respectively. Dopaminergic nerve terminal integrity, as assessed by DAT protein expression, also revealed more drastic reductions in the VMAT2 +/− mice: 59 versus 35% loss at 7.5 mg/kg and 95 versus 58% loss at 15 mg/kg for VMAT2 +/− and VMAT2 +/+ mice, respectively. Expression of GFAP mRNA 2 days after MPTP was higher in the VMAT2 +/− mice than in the wild-type: 15.8- versus 7.8-fold increase at 7.5 mg/kg and 20.1- versus 9.6-fold at 15 mg/kg for VMAT2 +/− and VMAT2 +/+ mice, respectively. These observations clearly demonstrate that VMAT2 +/− mice are more susceptible to the neurotoxic effects of MPTP, suggesting that VMAT2-mediated sequestration of the neurotoxin into vesicles may play an important role in attenuating MPTP toxicity in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: β-Phenylethylamine (β-PEA) is an endogenous amine that is found in trace amounts in the brain. It is believed that the locomotor-stimulating action of β-PEA, much like amphetamine, depends on its ability to increase extracellular dopamine (DA) concentrations owing to reversal of the direction of dopamine transporter (DAT)-mediated DA transport. β-PEA can also bind directly to the recently identified G protein-coupled receptors, but the physiological significance of this interaction is unclear. To assess the mechanism by which β-PEA mediates its effects, we compared the neurochemical and behavioral effects of this amine in wild type (WT), heterozygous and ‘null’ DAT mutant mice. In microdialysis studies, β-PEA, administered either systemically or locally via intrastriatal infusion, produced a pronounced outflow of striatal DA in WT mice whereas no increase was detected in mice lacking the DAT (DAT-KO mice). Similarly, in fast-scan voltammetry studies β-PEA did not alter DA release and clearance rate in striatal slices from DAT-KO mice. In behavioral studies β-PEA produced a robust but transient increase in locomotor activity in WT and heterozygous mice. In DAT-KO mice, whose locomotor activity and stereotypy are increased in a novel environment, β-PEA (10–100 mg/kg) exerted a potent inhibitory action. At high doses, β-PEA induced stereotypies in WT and heterozygous mice; some manifestations of stereotypy were also observed in the DAT-KO mice. These data demonstrate that the DAT is required for the striatal DA-releasing and hyperlocomotor actions of β-PEA. The inhibitory action on hyperactivity and certain stereotypies induced by β-PEA in DAT-KO mice indicate that targets other than the DAT are responsible for these effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 27 (2004), S. 107-144 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: G protein-coupled receptors (GPCRs) have proven to be the most highly favorable class of drug targets in modern pharmacology. Over 90% of nonsensory GPCRs are expressed in the brain, where they play important roles in numerous neuronal functions. GPCRs can be desensitized following activation by agonists by becoming phosphorylated by members of the family of G protein-coupled receptor kinases (GRKs). Phosphorylated receptors are then bound by arrestins, which prevent further stimulation of G proteins and downstream signaling pathways. Discussed in this review are recent progress in understanding basics of GPCR desensitization, novel functional roles, patterns of brain expression, and receptor specificity of GRKs and betaarrestins in major brain functions. In particular, screening of genetically modified mice lacking individual GRKs or betaarrestins for alterations in behavioral and biochemical responses to cocaine and morphine has revealed a functional specificity in dopamine and mu-opioid receptor regulation of locomotion and analgesia. An important and specific role of GRKs and betaarrestins in regulating physiological responsiveness to psychostimulants and morphine suggests potential involvement of these molecules in certain brain disorders, such as addiction, Parkinson's disease, mood disorders, and schizophrenia. Furthermore, the utility of a pharmacological strategy aimed at targeting this GPCR desensitization machinery to regulate brain functions can be envisaged.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Morphine is a powerful pain reliever, but also a potent inducer of tolerance and dependence. The development of opiate tolerance occurs on continued use of the drug such that the amount of drug required to elicit pain relief must be increased to compensate for diminished responsiveness. In many ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2072
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...