Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 417 (1990), S. 114-116 
    ISSN: 1432-2013
    Keywords: Skeletal muscle ; G-proteins ; Excitation contraction coupling ; GTPγS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract G-proteins play several regulatory roles in the cell. They can modulate ionic channels directly or in association with second messengers. In skeletal muscle, G-proteins modulate the activity of calcium channels either by acting directly on the channel and/or through a cAMP-dependent phosphorylating mechanism19. The activation of G-proteins by GTPγS can also induce force generation in skinned fibers7. In this paper we studied the effect of GTP-γS on charge movement and calcium currents (ICa) in rat and frog skeletal muscle, using the Vaseline gap technique. We observed an increase in both charge movement and ICa after the intracellular addition of 10–100 μM GTPγS. GDPβS did not have any effect. Addition of protein kinase A catalytic subunit increased the ICa, probably through a phosphorylation process, but did not modify the charge movement. This suggests that protein kinase A and GTPγS are acting on different sites of the channel. It can be speculated that G-proteins may have a regulatory role in the excitationcontraction coupling mechanism by a direct effect on charge movement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of muscle research and cell motility 7 (1986), S. 291-298 
    ISSN: 1573-2657
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Ca2+ channels are widely distributed among different cell types. We shall describe in this paper kinetic properties of voltage-dependent slow Ca2+ channels in mammalian and frog skeletal muscle fibres. In addition, recent data on a fast-activated Ca2+ channel will be presented. Finally, the possible physiological role of the channel will be considered.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...