Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The cell wall structure of Salmonella typhimurium has been studied for the first time during transit from free-living to parasitic lifestyles. Peptidoglycan of S. typhimurium proliferating within human epithelial cells contains a high proportion of previously unidentified muropeptides (5–10-fold higher than in extracellular bacteria). Amino acid and mass-spectrometry analyses showed that these new components consist of dimeric cross-linked muropeptides lacking one of the two disaccharide (N-acetyl-glucosamine-β-(1→4)-N-acetyl-muramic acid) molecules. This unique structure suggests an active role for an N-acetyl-muramyl-l-alanine-amidase in remodelling the peptidoglycan of intracellular S. typhimurium. Additional alterations observed included: (i) the absence of glycine-containing muropeptides; (ii) the increase in the relative proportion of muropeptides cross-linked by l(meso)-diaminopimelyl-d(meso)-diaminopimelic acid (l–d) peptide bridges; and, (iii) the decrease in the global cross-linkage of the macromolecule. The structural alterations observed in the peptidoglycan of intracellular bacteria do not produce loss of the cell envelope. These results show that intracellular residence of S. typhimurium within epithelial cells is accompanied by significant changes in the bacterial cell wall. Remodelling of peptidoglycan structure may constitute another sophisticated strategy of this pathogen for adapting to and colonizing the intracellular niche of eukaryotic cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Bacterial pathogenesis relies on regulators that activate virulence genes. Some of them act, in addition, as repressors of specific genes. Intracellular-growth-attenuator-A (IgaA) is a Salmonella enterica membrane protein that prevents overactivation of the RcsC-YojN-RcsB regulatory system. This negative control is critical for growth because disruption of the igaA gene is only possible in rcsC, yojN or rcsB strains. In this work, we examined the contribution of this regulatory circuit to virulence. Viable igaA point mutant alleles were isolated and characterized. These alleles encode IgaA variants leading to different levels of activation of the RcsC-YojN-RcsB system. IgaA-mediated repression of the RcsB-YojN-RcsC system occurred at the post-translational level, as shown by chromosomal epitope tagging of the rcsC, yojN and rcsB genes. The activity of the RcsC-YojN-RcsB system, monitored with the product of a tagged gmd-3xFLAG gene (positively regulated by RcsC-YojN-RcsB), was totally abolished by wild-type bacteria in mouse target organs. Such tight repression occurred only in vivo and was mediated by IgaA. Shutdown of the RcsC-YojN-RcsB system is a requisite for Salmonella virulence since all igaA point mutant strains were highly attenuated. The degree of attenuation correlated to that of the activation status of RcsC-YojN-RcsB. In some cases, the attenuation recorded was unprecedented, with competitive index (CI) values as low as 10−6. Strikingly, IgaA is a protein absolutely dispensable for virulence in mutant strains having a non-functional RcsC-YojN-RcsB system. To our knowledge, IgaA exemplifies the first protein that contributes to virulence by exclusively acting as a negative regulator upon host colonization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The invasion-associated type III secretion system of Salmonella enterica assembles as a supra-molecular structure, termed needle complex, which spans the bacterial envelope. Here, we present evidence for protein–peptidoglycan interactions that modulate the assembly of this organelle. The presence of major membrane components of the needle complex (PrgH, PrgK and InvG) and InvH, required for efficient assembly of the organelle, was examined in peptidoglycan purified by extensive boiling of bacteria in 4% SDS. InvH, PrgH and PrgK, but not InvG, were detected in this purified material. InvH was present in the peptidoglycan in higher relative amounts than PrgH or PrgK, and was the only protein efficiently bound to peptidoglycan in cross-linking experiments. Analysis in mutants defective for needle complex proteins showed that the needle proteins PrgI and PrgJ and, to a lesser extent, InvH, sustain the association of PrgH and PrgK with peptidoglycan. In contrast, the association of InvH with peptidoglycan did not necessitate other needle complex proteins. Functional analysis showed that the association of InvH, PrgH and PrgK with peptidoglycan is abolished in live bacteria carrying structural modifications in the peptidoglycan. The loss of these interactions caused a marked reduction in the number of needle complexes and, concomitantly, in protein secretion and bacterial invasion of cultured eukaryotic cells. Altogether, these data provide the first evidence for an association between proteins of the Salmonella needle complex and the peptidoglycan. In addition, we demonstrate that these protein–peptidoglycan interactions are critical for an efficient and correct assembly of this specialized organelle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 172 (1999), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The fine structure of sacculi from Thermus thermophilus HB27, T. aquaticus YT-1 and Thermus ATCC27737 has been worked out by HPLC analysis and mass spectrometry techniques. The three microorganisms have a murein composition of the rare A3β chemotype, but showed substantial differences in muropeptide composition. Phenylacetylated muropeptides, previously described in T. thermophilus HB8, were detected exclusively in T. thermophilus HB27. Murein from T. aquaticus YT-1 was devoid of d-Ala-d-Ala terminated muropeptides, which were, in contrast, abundant in T. thermophilus HB27 and Thermus ATCC27737. The significance of these findings is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...