Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Protein aggregation in thylakoids incurred in situ during light-induced heat shock damage can be simulated in vitro by illuminating isolated thylakoids at normal temperatures. Aggregation is detectable in the in vitro model system by fluorography of [35-S]-methionine-labelled thylakoids fractionated by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and also by Coomassie staining after SDS-PAGE of unlabelled thylakoids. As in the case of light-induced heat shock damage, protein aggregation in the in vitro system is completely light dependent, and the D-1 protein of PS][is present in the protein aggregate. The model system has also provided evidence for the involvement of activated oxygen in aggregation of thylakoid proteins. Histidine, which scavenges singlet oxygen, and n-propylgallate; a non-specific scavenger of activated oxygen, both provided complete protection against light induced protein aggregation in isolated thylakoids. These compounds also strongly reduced the levels of activated oxygen by illuminated thylakoids as measured by electron spin resonance. The involvement of activated oxygen is further supported by the finding that protein aggregation in the model system proved to be oxygen dependent. The herbicide dichlorophenyldimethyl urea, which binds to the QB site of the D-1 protein of PSII and provides protection against photoinhibition and light dependent degradation of the D-1 protein, also provided partial protection against protein aggregation in the in vitro system. Protein continues to aggregate after PSII activity has reached undetectable levels suggesting that aggregation is a consequence rather than a cause of photoinhibition. The observations collectively indicate that aggregation of thylakoid proteins is attributable to activated oxygen.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0003-2697
    Keywords: Coomassie brilliant blue ; dye binding ; protein measurement
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 53 (1981), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The hypothesis that the promotive effect of the embryo axis of the germinating bean seed on amylase activity in the cotyledons is mediated by an osmoregulative mechanism was examined. After 2 days of germination the action of the axis on amylolytic activity was already clearly revealed, whereas at the same time it did not have any influence on osmotic pressure in the cotyledons. When the axis was attached to one cotyledon during 4 days of incubation, osmotic pressure in the cotyledon was lower than its value in the cotyledons of the intact seedling, whereas amylolytic activity was similar in both treatments. It was concluded that the tested hypothesis is not valid in the case of the bean seedling. External osmotic agents brought about a decrease in the level of amylase in the cotyledons, but this does not prove that osmotic changes which are brought about by production of internal metabolites are involved in the regulation of amylase synthesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Plant Science 88 (1993), S. 129-140 
    ISSN: 0168-9452
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 75 (1988), S. 850-856 
    ISSN: 1432-2242
    Keywords: Conyza bonariensis ; Superoxide-dismutase ; Glutathione-reductase ; Ascorbate-peroxidase ; Paraquat resistance ; Oxygen-radical detoxification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The genetics of paraquat-resistance in Conyza bonariensis was studied. Reciprocal crosses were prepared between resistant and sensitive individuals. The enzymes of the pathway that detoxifies superoxide to innocuous oxygen species involved in resistance were evaluated in the F1 and F2 generations. All F1 plants were as resistant as the resistant parent, irrespective of parental sex, demonstrating dominance and excluding maternal inheritance. The activities of superoxide-dismutase, ascorbate-peroxidase and glutathione-reductase in the F1 were constitutively as high as in the resistant parent. Resistance in the F2 generation was distributed in a 3∶1 ratio (resistant to sensitive). Leaves from F2 plants were removed for a resistance assay and enzyme immuno-assays of single plants were performed. The high levels of superoxide-dismutase and glutathione-reductase, the two enzymes for which antibodies were available, were similar in resistant individuals to the levels in the resistant parent; the levels were low in the susceptible individuals. These results indicate either a very tight linkage, or more probably, that one dominant nuclear gene controls resistance by pleiotropically controlling the levels of enzymes of the activeoxygen detoxification pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: bean ; leaf senescence ; protein degradation ; protein synthesis ; thylakoids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract During senescence of primary bean leaves (Phaseolus vulgaris), there are differential changes in the rates at which thylakoid proteins are synthesized. In particular, synthesis of the 32 kD herbicide-binding protein continues throughout senescence, whereas formation of the α and β subunits of ATPase, the 68 kD photosystem I reaction center polypeptide, cytochrome f, cytochrome b6 and the structural apoprotein of the lightharvesting chlorophyll protein complex (LHCP) declines. Pulse-chase experiments with intact leaves indicated rapid degradation of the 32 kD protein, which is consistent with its known rapid rate of turnover. This degradation was light-dependent and inhibited by DCMU, and the kinetics of degradation were similar for young and senescent membranes. In Coomassie-stained gels, the 68 kD reaction center polypeptide of photosystem I, the α and β subunits of ATPase and the LHCP were the dominant proteins for all ages of membranes. Western blot analysis indicated that cytochrome f and cytochrome b6 are selectively depleted during senescence. The data have been interpreted as indicating that translational disruptions in both the cytoplasmic and chloroplastic compartments may contribute to the decline in photosynthetic electron transport in the senescing leaf.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...