Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0931-1890
    Keywords: Key words Pseudotsuga menziesii ; Pinus ponderosa ; Anoxia ; Hypoxia ; Anaerobic respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  Seedlings of Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, and ponderosa pine, Pinus ponderosa Dougl. ex Laws., were grown in a controlled environment and fertilized with nutrient solutions containing 150 ppm (+N), or 0 ppm nitrogen (−N). These treatments greatly altered seedling growth, and the concentrations of N and carbohydrates in their tissues. Metabolically active tissues, such as roots, incubated with a limited supply of O2 became hypoxic faster and synthesized more ethanol than less active tissues, such as needles. All tissues that were incubated for 4 h in N2 synthesized ethanol. Needles incubated in N2 and light had much lower quantities of ethanol than needles in N2 and dark, suggesting that O2 from photosynthetsis limited internal anoxia. Most tissues from +N seedlings synthesized greater quantities of ethanol in N2 anoxia than tissues from −N seedlings, probably because they were able to produce more enzymes with a greater availability of N. However, this increase in ethanol synthesis between N treatments was most pronounced in the phloem. Ethanol and soluble sugar concentrations were negatively related in needles and positively related in roots of N+ seedlings, but not −N seedlings. Starch concentrations had no effect on the amount of ethanol produced by any tissue. Regardless of N treatments, all tissues from ponderosa pine produced more N2-induced ethanol than Douglas-fir, in part because its tissues contained different concentrations of soluble sugars and N as a consequence of phenological differences between the species. However, ponderosa pine tissues may also maintain greater quantities of anaerobic enzymes, or their isozymes than Douglas-fir.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-1561
    Keywords: Piperidine alkaloids ; pinidine ; euphococcinine ; foliar chemistry ; nitrogen ; Pinus ponderosa ; Pinus contorta
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract We quantified 2,6-disubstituted piperidine alkaloids in Pinus ponderosa and P. contorta needles from three forest sites in April, June, August, and December. Alkaloids were detected on at least one date in 71% of the ponderosa pine and in 29% of the lodgepole pine trees sampled. Pinidine was the major alkaloid constituent of ponderosa pine, while euphococcinine was the predominant compound in lodgepole pine. For ponderosa pine, total alkaloid concentrations were very low at two sites on all dates. At the third site, concentrations were variable but significantly higher on all dates. Total alkaloid concentrations in previous-year foliage from this site were highest in April, then significantly lower from June through December. Current-year foliage collected in August and December had significantly higher alkaloid concentrations than previous-year foliage on the same dates. Variation in foliar nitrogen concentrations accounted for some of the alkaloid variation in current-year foliage sampled in August.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 25 (1999), S. 2027-2039 
    ISSN: 1573-1561
    Keywords: 2,6-Disubstituted piperidine alkaloids ; Pinus ponderosa ; ponderosa pine ; fertilization ; nitrogen availability ; foliar nitrogen ; Pinaceae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract We fertilized individual, pole-size ponderosa pine trees at two low-quality sites and pine saplings at a relatively high-quality site, with ammonium nitrate. Six to 12 months later, we measured total %N and 2,6-disubstituted piperidine alkaloids in the foliage. The N additions raised foliar %N above deficiency levels (i.e., from 1.0–1.1% to 1.4–1.6%) at the low-quality sites, but did not elevate foliar %N in saplings at the higher quality site, where it was already (1.9%) well above critical levels. In control trees with foliar N below a threshold of 1.1%, we detected no more than trace levels of alkaloids, indicating that alkaloid production is highly constrained by N deficiency. The N additions increased mean concentrations of the predominant alkaloid, pinidine, at all three sites. Mean total alkaloid concentrations for fertilized trees at the two low-quality sites were 12 and 155 μg/g dry wt higher than controls (relative increases of 12× and 4.5×, respectively). For saplings at the high-quality site, the mean total increased by 584 μg/g dry wt (1.6×) with the N additions. Allocation of foliar N to alkaloids was highest in fertilized saplings (0.81%) compared to control saplings (0.53%). These findings demonstrate that foliar alkaloid concentrations can be increased by nitrogen fertilization of forest trees growing on both low- and high-quality sites. Fertilizing for the purpose of inhibiting potential herbivores may be more successful at higher quality sites where alkaloid levels are enhanced relative to food quality (foliar %N).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...