Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 54 (1992), S. 733-748 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 508 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 100 (1979), S. 23-31 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The equilibrium distribution of 5,5-dimethyloxazoladine 2,4-dione (DMO) between intra- and extracellular volume was used to estimate intracellular pH (pHi) in Tetrahymena pyriformis. In control experiments, DMO was found to equilibrate rapidly in response to a pH gradient. Under normal growth conditions, pHi was constant over a finite range of external pH, being maintained near pH 7.1 over the external pH range 5.25 to 7.3. This same range of external pH was also optimal for growth. pHi was monitored during the cell cycle of a synchronous population of T. pyriformis GL. The cells were synchronized either by starvation/refeeding or heat shock. Under both conditions, there were two alkaline shifts of approximately 0.4 pH units per cell cycle. These shifts in pH retained a constant remporal relationship to S phase and were not affected by changes in the time, duration, or magnitude of cytokinesis.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 105 (1980), S. 221-225 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Media concentration of total soluble CO2 increases with culture age of Tetrahymena pyriformis. CO2 is a weak acid and is capable of acidifying intracellular pH (pHi). Changes in pHi have been demonstrated to affect cell metabolism and growth in many systems. For these reasons, we investigated whether the concentrations of CO2 produced in vitro were sufficient to affect cell proliferation and pHi in Tetrahymena. In this study, we used DMO to mimic the weak acid properties of CO2. DMO is freely permeable to membranes in its uncharged form and has a pKa similar to that of CO2/HCO3-. In addition, it has the advantages of being metabolically inert and non-volatile. At concentrations similar to endogenously produced CO2, DMO acidifies pHi and arrests culture growth. In addition, procedures are described which decrease the media CO2 concentrations in both growing and non-growing cultures. These conditions lead to increased maximum culture density at stationary phase. The data indicate that, under our conditions, accumulation of CO2 in the culture leads to cessation of growth, probably through elimination of transmembrane pH gradients, which are necessary for regulation of metabolism and growth.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 108 (1981), S. 115-122 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: “Fertilization acid” is released from sea urchin eggs upon fertilization and decreases the pH of the surrounding seawater. In bicarbonate-free artificial seawater flushed with nitrogen gas, the pH shift still occurs but returns to the original value in a few minutes, suggesting that the released acid is volatile. A likely candidate for a volatile acid is carbon dioxide released from the eggs. Therefore, the total CO2 content of seawater was measured pre- and post-fertilization and was found to be correlated stoichiometrically with released proton equivalents, leading to the conclusion that fertilization acid is largely carbon dioxide. Manometric analysis of cell extracts and ashed eggs suggest that the carbon dioxide may be stored in the unfertilized egg as an inorganic carbonate.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 136 (1988), S. 161-167 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: One of the earliest events to occur upon the addition of serum to quiescent cells is an increase in the intracellular pH (pHin). The relationship between this pH change and proliferation is not known. In the present study, we investigate the consequences of acidifying the cytosol using the weak acid, 5′, 5″-dimethyl oxazolidine 2,4-dione (DMO). At a concentration of 50 mM, DMO inhibits the serum-induced increases in pHin, DNA synthesis, and cell number. This concentration of DMO is shown not to inhibit the steady-state rate of mitochondrial respiration and not to inhibit DNA synthesis in a pH-independent fashion. The effects of DMO treatments are also shown to be reversible, indicating that this compound is not cytotoxic. These observations indicate that DMO inhibits cell proliferation by lowering intracellular pH. One important event that must occur prior to the initiation of DNA synthesis is an elevated rate of protein synthesis. The rate of protein synthesis in situ is extremely pH sensitive. Addition of 50 mM DMO to serum-stimulated cultures reduces the rate of leucine incorporation to unstimulated levels. These observations suggest that cytoplasmic acidification may inhibit proliferation through its effects on protein synthesis.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 136 (1988), S. 154-160 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: One of the earliest responses of quiescent mammalian cells to the addition of serum is an increase in intracellular pH (pHin). This pHin change is generally believed to be due to an increased activity of Na+/H+ exchange. A number of investigators have observed steady-state differences in pHin between cells in the presence and absence of serum. However, no one has examined differences in pHin regulation that may exist between cells chronically exposed to, or deprived of serum. In this study, we investigated the effects of serum deprivation to identify those components of pHin regulation that were associated with quiescence. To do this, we examined pHin in cells growing chronically in 10% serum as well as in cells that were either acutely (1.5-2 hr) or chronically (48 hr) deprived of serum. Intracellular pH was monitored using the fluorescence of intracellularly loaded pyranine dye. Our results indicate that the resting pHin values of chronically or acutely serum-deprived cells were not significantly different from each other yet, in both cases, were lower than those observed in cells exposed to 10% serum. Furthermore, we observed significant increases in pHin of both acutely or chronically serum-deprived cells in response to the addition of serum at various concentrations, in the presence of 24 mM bicarbonate. Chronically serum-deprived cells had slightly smaller responses and were more sensitive to lower concentrations of serum than were acutely deprived cells. Therefore, our data suggest that long-term serum deprivation affects the magnitude and sensitivity of pHin to serum stimulation and causes the loss of some form of pHin regulatory mechanism(s).
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...