Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0014-5793
    Keywords: Electron transfer ; Kinetics ; Metalloprotein ; Structural change ; Terminal oxidase
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 56 (1999), S. 549-557 
    ISSN: 1420-9071
    Keywords: Key words. Cytochrome oxidase; respiration; inhibition; intermediates; mechanism; NO degradation.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. The role of nitric oxide (NO) as a signalling molecule involved in many pathophysiological processes (e.g., smooth muscle relaxation, inflammation, neurotransmission, apoptosis) has been elaborated during the last decade. Since NO has also been found to inhibit cellular respiration, we review here the available information on the interactions of NO with cytochrome c oxidase (COX), the terminal enzyme of the respiratory chain. The effect of NO on cellular respiration is first summarized to present essential evidence for the fact that NO is a potent reversible inhibitor of in vivo O2 consumption. This information is then correlated with available experimental evidence on the reactions of NO with purified COX. Finally, since COX has been proposed to catalyze the degradation of NO into either nitrous oxide (N2O) or nitrite, we consider the putative role of this enzyme in the catabolism of NO in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1420-9071
    Keywords: Key words. Mitochondrial particles; cytochrome oxidase; fast and slow conformation; cyanide binding; nucleotides; cholate; structure.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. We determined the fraction of ‘slow’ and ‘fast’ conformations of bovine cytochrome c oxidase, following the kinetics of cyanide binding to the oxidized enzyme. We investigated whether treatment of heart mitochondrial particles with different commercially available types of cholate (standard and ultra-pure) can affect the fraction of cytochrome c oxidase in the two states. Compared to standard cholate, the use of ultra-pure cholate for solubilization of heart mitochondrial particles significantly increased the fraction of the fast enzyme. Complete homogeneity (∼100% fast) was observed when cytochrome c oxidase was solubilized with ultra-pure cholate from heart mitochondrial particles pre-equilibrated with AMP; equilibration with ADP yielded a much smaller fraction of fast enzyme (∼35%). These observations are discussed on the basis of the structural relationships between the known cholate-binding site and the binuclear cytochrome a3-CuB site: variation in the occupancy of this binding site with cholate or nucleotides may modify reactivity of the oxidized binuclear centre towards cyanide.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 30 (1998), S. 41-45 
    ISSN: 1573-6881
    Keywords: Nitric oxide ; cytochrome oxidase ; electron transfer kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Novel experimental evidence is presented further supporting the hypothesis that, starting with resting oxidized cytochrome c oxidase, the internal electron transfer to the oxygen binding site is kinetically controlled. The reduction of the enzyme was followed spectroscopically and in the presence of NO or CO, used as trapping ligands for reduced cytochrome a3; ruthenium hexamine was used as a spectroscopically silent electron donor. Consistent with the high combination rate constant for reduced cytochrome a3, NO proved to be a very efficient trapping ligand, while CO did not. The results are discussed in view of two alternative (thermodynamic and kinetic) hypotheses of control of electron transfer to the binuclear (cyt.a3-CuB) center. Fulfilling the prediction of the kinetic control hypothesis: i) the reduction of cytochrome a3 and ligation are synchronous and proceed at the intrinsic rate of cytochrome a3 reduction, ii) the measured rate of formation of the nitrosyl derivative is independent of the concentration of both the reductant and NO.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...