Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 1 (1967), S. 631-638 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 4 (1970), S. 437-438 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Extensive studies of precipitation chemistry during the last 20 yr have clearly shown that highly polluted precipitation falls over large areas of Scandinavia, and that this pollution is increasing in severity and geographical extent. Precipitation in southern Norway, Sweden, and Finland contains large amounts of H+, SO= 4, and NO− 3 ions, along with heavy metals such as Cu, Zn, Cd, and Pb, that originate as air pollutants in the highly industrialized areas of Great Britain and central Europe and are transported over long distances to Scandinavia, where they are deposited in precipitation and dry-fallout. In Norway the acidification of fresh waters and accompanying decline and disappearance of fish populations were first reported in the 1920s, and since then in Sørlandet (southernmost Norway) the salmon have been eliminated from several rivers and hundreds of lakes have lost their fisheries. Justifiably, acid precipitation has become Norway's number-one environmental problem, and in 1972 the government launched a major research project entitled ‘Acid precipitation — effects on forest and fish’, (the SNSF-project). Studies of freshwater ecosystems conducted by the SNSF-project include intensive research at 10 gauged watersheds and lake basins in critical acid-areas of southern Norway, extensive surveys of the geographical extent and severity of the problem over all of Norway, and field and laboratory experiments on the effect of acid waters on the growth and physiology of a variety of organisms. Large areas of western, southern, and eastern Norway have been adversely affected by acid precipitation. The pH of many lakes is below 5.0, and sulfate, rather than bicarbonate, is the major anion. Lakes in these areas are particularly vulnerable to acid precipitation because their watersheds are underlain by highly resistant bedrock with low Ca and Mg contents. Apart from the well-documented decline in fish populations, relatively little is known about the effects of acid precipitation on the biology of these aquatic ecosystems. Biological surveys indicate that low pH-values inhibit the decomposition of allochthonous organic matter, decrease the species number of phyto-and zooplankton and benthic invertebrates, and promote the growth of benthic mosses. Acid precipitation is affecting larger and larger areas of Norway. The source of the pollutants is industrial Europe, and the prognosis is a continued increase in fossil-fuel consumption. The short-term effects of the increasing acidity of freshwater ecosystems involve interference at every trophic level. The long-term impact may be quite drastic indeed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-515X
    Keywords: humic lake ; TOC ; acidification ; climate ; carbon budget
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Studies of fluctuations in total organic carbon (TOC) were performedin both the reference basin and the acidified basin of experimental LakeSkjervatjern, in order to separate effects of various catchment and in-lakeprocesses. Nearly five years of catchment acidification did not inducesignificant changes in TOC. TOC concentrations was not related clearly toprecipitation or runoff. In both basins, there was a regular, seasonal patternwith a gradual increase in TOC concentrations from spring to late autumn.Minima in concentrations occurred during periods with frozen ground inwinter, irrespective of discharge patterns. The decrease from ∼10 mg C l-1 in autumn to 1--2 mg C l-1 in latewinter, was only seen in surface layers. Runoff was the major loss routefor surface TOC in the lake. Photo-oxidation, bacterial oxidation, andsedimentation combined yielded maximum loss rates of 3%of surface TOC d-1. Below a depth of 1 m 0.5%d-1 was lost to these same processes. The surface microlayerhad 5--10 times more TOC than the bulk water on average, and could haveeffects on gas exchange and sub-surface light. Despite the oxidation ofTOC, the short residence time of the lake and rapid replacement of TOCfrom the catchment was the major determinant of lake water TOC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...