Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 81 (1977), S. 2555-2559 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 96 (1992), S. 2151-2161 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 90 (1986), S. 508-513 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 95 (1991), S. 1626-1635 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 13 (1981), S. 149-172 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Overall and detailed kinetic descriptions of the pyrolysis of C3H8 have been proposed as a result of a turbulent flow reactor investigation in the temperature range of 1110-1235 K and at atmospheric pressure. The overall reaction was described by a first-order rate expression with an activation energy of 58.65 kcal/mol and a preexponential factor of 3.2 × 1012 sec-1. This expression agrees with previously reported rate data. In addition, a kinetic mechanism involving 13 chemical species and 32 elementary reactions has been postulated to describe the kinetics. Experimental data from the present flow reactor experiments and from static vessel and shock tube experiments reported in the literature were used to verify the mechanism. Agreement over the temperature range of 800-1400 K and over the pressure range of 0.1-8.5 atm was obtained by adjusting three rate constants. Previously reported values for these rate constants appear to require reexamination. The reactions in question are the following: The sum of the rate constants for reactions (2a) and (2b) and the rate constant for reaction (23) are best represented by \documentclass{article}\pagestyle{empty}\begin{document}$$ k_{2a} + k_{2b} = 10^{- 0.1} T^4 \exp (-8300/{\rm RT}){\rm cm}^3 /{\rm mol}\;{\rm sec} $$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$$ k_{23} = 10^{14.55} \exp (-14,340/{\rm RT}){\rm cm}^3 /{\rm mol}\;{\rm sec} $$\end{document} which differ with the expressions in the literature.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 21 (1989), S. 547-560 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Phenol pyrolysis has been studied in a turbulent flow reactor by analyzing concentration-time profiles of three major decomposition products: carbon monoxide, cyclopentadiene, and benzene. Experimental conditions were P = 1 atm, T = 1064 - 1162 K, and initial phenol concentrations of 500-2016 ppm. The major experimental observations were that the decomposition product profiles were nearly linear as a function of time and that the overall rate of carbon monoxide production was greater than that of cyclopentadiene. The rate difference is explained by a mechanism which includes a radical combination reaction of cyclopentadienyl and phenoxy. With literature and approximate rate coefficient data, the mechanism reproduced the experimental observations very well. The mechanism and data provide estimates of rate coefficients for the phenol decomposition initiation step, abstraction of hydrogen from phenol by cyclopentadienyl, and the phenoxy-cyclopentadienyl combination, all of which have not been available in the literature.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 7 (1975), S. 223-247 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: High-temperature (〉1000°K) pyrolysis of acetaldehyde (∼1% in an atmosphere of pure nitrogen) was examined in a turbulent flow reactor which permits accurate determination of the spatial distribution of the stable species. Results show that the products in order of decreasing importance are CO, CH4, H2, C2H6, and C2H4. Rates of formation were consistent with the Rice-Herzfeld mechanism by including reactions to explain C2H4 formation and the possible presence of ketene. A steady-state treatment of the complete mechanism indicates that the overall reaction order decreases from \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{3}{2} $\end{document} to 1, which is supported by the new experimental data. Using earlier low-temperature results, the rate constant for the reaction CH3CHO → CH3 + CHO (1) was found as k1=1015.85±0.21 exp (-81,775±1000/RT) sec-1. Also, data for the ratio of rate constants for reactions CH3CHO + CH3 → CH4 + CH3CO (4) and 2CH3 → C2H6(6) were fitted to the empirical expression k4/k61/2=10-13.89±0.03T6.1 exp(-1720±70/RT) (cm3/mole·sec)1/2 and causes for the curvature are discussed. The noncatalytic effect of oxygen on acetaldehyde pyrolysis at high temperature is explained.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 1053-1074 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: From the results of order of magnitude analyses, it is concluded that during the oxidation of toluene, radical-atom and radical-radical reactions (1) and (3) play an unusually important and approximately equal role in the formation of benzaldehyde, an intermediate that leads eventually to the complete removal of the side chain. An additional radical-radical system, reaction (2), is shown to be the most likely source of benzyl alcohol observed during toluene oxidation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...